Skip to main content

Source code file content

Revision: 1489

17361355 Remove devcrypto engine 17361377 Change the pkcs11 engine into a dynamic engine
» Project Revision History

» Checkout URL

gate / components / openssl / openssl-1.0.1 / engines / pkcs11 / e_pk11_pub.c

Size: 83999 bytes, 1 line
/*
 * Copyright (c) 2004, 2013, Oracle and/or its affiliates. All rights reserved.
 */

/* crypto/engine/e_pk11_pub.c */
/*
 * This product includes software developed by the OpenSSL Project for
 * use in the OpenSSL Toolkit (http://www.openssl.org/).
 *
 * This project also referenced hw_pkcs11-0.9.7b.patch written by
 * Afchine Madjlessi.
 */
/*
 * ====================================================================
 * Copyright (c) 2000-2001 The OpenSSL Project.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *
 * 3. All advertising materials mentioning features or use of this
 *    software must display the following acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
 *
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
 *    endorse or promote products derived from this software without
 *    prior written permission. For written permission, please contact
 *    licensing@OpenSSL.org.
 *
 * 5. Products derived from this software may not be called "OpenSSL"
 *    nor may "OpenSSL" appear in their names without prior written
 *    permission of the OpenSSL Project.
 *
 * 6. Redistributions of any form whatsoever must retain the following
 *    acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
 *
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 * OF THE POSSIBILITY OF SUCH DAMAGE.
 * ====================================================================
 *
 * This product includes cryptographic software written by Eric Young
 * (eay@cryptsoft.com).  This product includes software written by Tim
 * Hudson (tjh@cryptsoft.com).
 *
 */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <unistd.h>
#include <strings.h>

#include <openssl/e_os2.h>
#include <openssl/crypto.h>
#include <openssl/engine.h>
#include <openssl/dso.h>
#include <openssl/err.h>
#include <openssl/bn.h>
#include <openssl/pem.h>
#ifndef OPENSSL_NO_RSA
#include <openssl/rsa.h>
#endif /* OPENSSL_NO_RSA */
#ifndef OPENSSL_NO_DSA
#include <openssl/dsa.h>
#endif /* OPENSSL_NO_DSA */
#ifndef OPENSSL_NO_DH
#include <openssl/dh.h>
#endif /* OPENSSL_NO_DH */
#include <openssl/rand.h>
#include <openssl/objects.h>
#include <openssl/x509.h>
#include <pthread.h>
#include <libgen.h>

#ifndef OPENSSL_NO_HW
#ifndef OPENSSL_NO_HW_PK11

#include <security/cryptoki.h>
#include <security/pkcs11.h>
#include "e_pk11.h"
#include "e_pk11_uri.h"

static CK_BBOOL pk11_login_done = CK_FALSE;
extern CK_SLOT_ID pubkey_SLOTID;

/*
 * During the reinitialization after a detected fork we will try to login to the
 * token using the passphrasedialog keyword that we inherit from the parent.
 */
char *passphrasedialog;

#ifndef OPENSSL_NO_RSA
/* RSA stuff */
static int pk11_RSA_public_encrypt(int flen, const unsigned char *from,
	unsigned char *to, RSA *rsa, int padding);
static int pk11_RSA_private_encrypt(int flen, const unsigned char *from,
	unsigned char *to, RSA *rsa, int padding);
static int pk11_RSA_public_decrypt(int flen, const unsigned char *from,
	unsigned char *to, RSA *rsa, int padding);
static int pk11_RSA_private_decrypt(int flen, const unsigned char *from,
	unsigned char *to, RSA *rsa, int padding);
static int pk11_RSA_init(RSA *rsa);
static int pk11_RSA_finish(RSA *rsa);
static int pk11_RSA_sign(int type, const unsigned char *m, unsigned int m_len,
	unsigned char *sigret, unsigned int *siglen, const RSA *rsa);
static int pk11_RSA_verify(int dtype, const unsigned char *m,
	unsigned int m_len, const unsigned char *sigbuf, unsigned int siglen,
	const RSA *rsa);
EVP_PKEY *pk11_load_privkey(ENGINE*, const char *privkey_id,
	UI_METHOD *ui_method, void *callback_data);
EVP_PKEY *pk11_load_pubkey(ENGINE*, const char *pubkey_id,
	UI_METHOD *ui_method, void *callback_data);

static int pk11_RSA_public_encrypt_low(int flen, const unsigned char *from,
	unsigned char *to, RSA *rsa);
static int pk11_RSA_private_encrypt_low(int flen, const unsigned char *from,
	unsigned char *to, RSA *rsa);
static int pk11_RSA_public_decrypt_low(int flen, const unsigned char *from,
	unsigned char *to, RSA *rsa);
static int pk11_RSA_private_decrypt_low(int flen, const unsigned char *from,
	unsigned char *to, RSA *rsa);

static CK_OBJECT_HANDLE pk11_get_public_rsa_key(RSA* rsa, PK11_SESSION *sp);
static CK_OBJECT_HANDLE pk11_get_private_rsa_key(RSA* rsa, PK11_SESSION *sp);

static int pk11_check_new_rsa_key_pub(PK11_SESSION *sp, const RSA *rsa);
static int pk11_check_new_rsa_key_priv(PK11_SESSION *sp, const RSA *rsa);
#endif

/* DSA stuff */
#ifndef OPENSSL_NO_DSA
static int pk11_DSA_init(DSA *dsa);
static int pk11_DSA_finish(DSA *dsa);
static DSA_SIG *pk11_dsa_do_sign(const unsigned char *dgst, int dlen,
	DSA *dsa);
static int pk11_dsa_do_verify(const unsigned char *dgst, int dgst_len,
	DSA_SIG *sig, DSA *dsa);

static CK_OBJECT_HANDLE pk11_get_public_dsa_key(DSA* dsa, DSA **key_ptr,
	BIGNUM **dsa_pub_num, CK_SESSION_HANDLE session);
static CK_OBJECT_HANDLE pk11_get_private_dsa_key(DSA* dsa, DSA **key_ptr,
	BIGNUM **dsa_priv_num, CK_SESSION_HANDLE session);

static int check_new_dsa_key_pub(PK11_SESSION *sp, DSA *dsa);
static int check_new_dsa_key_priv(PK11_SESSION *sp, DSA *dsa);
#endif

/* DH stuff */
#ifndef OPENSSL_NO_DH
static int pk11_DH_init(DH *dh);
static int pk11_DH_finish(DH *dh);
static int pk11_DH_generate_key(DH *dh);
static int pk11_DH_compute_key(unsigned char *key,
	const BIGNUM *pub_key, DH *dh);

static CK_OBJECT_HANDLE pk11_get_dh_key(DH* dh, DH **key_ptr,
	BIGNUM **priv_key, CK_SESSION_HANDLE session);

static int check_new_dh_key(PK11_SESSION *sp, DH *dh);
#endif

static int find_one_object(PK11_OPTYPE op, CK_SESSION_HANDLE s,
	CK_ATTRIBUTE_PTR ptempl, CK_ULONG nattr, CK_OBJECT_HANDLE_PTR pkey);
static int init_template_value(BIGNUM *bn, CK_VOID_PTR *pValue,
	CK_ULONG *ulValueLen);
static void attr_to_BN(CK_ATTRIBUTE_PTR attr, CK_BYTE attr_data[], BIGNUM **bn);

static int pk11_pkey_meth_nids[] = {NID_dsa};

/* Read mode string to be used for fopen() */
#if SOLARIS_OPENSSL
static char *read_mode_flags = "rF";
#else
static char *read_mode_flags = "r";
#endif

/*
 * Increment existing or create a new reference for an asymmetric key PKCS#11
 * object handle in the active object list. If the operation fails, unlock (if
 * locked), set error variable and jump to the specified label. We use this list
 * so that we can track how many references to the PKCS#11 objects are used from
 * all our sessions structures. If we are replacing an object reference in the
 * session structure and the ref count for the reference being replaced gets to
 * 0 we know that we can safely free the object itself via C_ObjectDestroy().
 * See also TRY_OBJ_DESTROY.
 */
#define	KEY_HANDLE_REFHOLD(key_handle, alg_type, unlock, var, label)	\
	{								\
	if (pk11_active_add(key_handle, alg_type) < 0)			\
		{							\
		var = CK_TRUE;						\
		if (unlock)						\
			UNLOCK_OBJSTORE(alg_type);			\
		goto label;						\
		}							\
	}

/*
 * Find active list entry according to object handle and return pointer to the
 * entry otherwise return NULL.
 *
 * This function presumes it is called with lock protecting the active list
 * held.
 */
static PK11_active *pk11_active_find(CK_OBJECT_HANDLE h, PK11_OPTYPE type)
	{
	PK11_active *entry;

	for (entry = active_list[type]; entry != NULL; entry = entry->next)
		if (entry->h == h)
			return (entry);

	return (NULL);
	}

/*
 * Search for an entry in the active list using PKCS#11 object handle as a
 * search key and return refcnt of the found/created entry or -1 in case of
 * failure.
 *
 * This function presumes it is called with lock protecting the active list
 * held.
 */
int
pk11_active_add(CK_OBJECT_HANDLE h, PK11_OPTYPE type)
	{
	PK11_active *entry = NULL;

	if (h == CK_INVALID_HANDLE)
		{
		PK11err(PK11_F_ACTIVE_ADD, PK11_R_INVALID_HANDLE);
		return (-1);
		}

	/* search for entry in the active list */
	if ((entry = pk11_active_find(h, type)) != NULL)
		entry->refcnt++;
	else
		{
		/* not found, create new entry and add it to the list */
		entry = OPENSSL_malloc(sizeof (PK11_active));
		if (entry == NULL)
			{
			PK11err(PK11_F_ACTIVE_ADD, PK11_R_MALLOC_FAILURE);
			return (-1);
			}
		entry->h = h;
		entry->refcnt = 1;
		entry->prev = NULL;
		entry->next = NULL;
		/* connect the newly created entry to the list */
		if (active_list[type] == NULL)
			active_list[type] = entry;
		else /* make the entry first in the list */
			{
			entry->next = active_list[type];
			active_list[type]->prev = entry;
			active_list[type] = entry;
			}
		}

	return (entry->refcnt);
	}

/*
 * Remove active list entry from the list and free it.
 *
 * This function presumes it is called with lock protecting the active list
 * held.
 */
void
pk11_active_remove(PK11_active *entry, PK11_OPTYPE type)
	{
	PK11_active *prev_entry;

	/* remove the entry from the list and free it */
	if ((prev_entry = entry->prev) != NULL)
		{
		prev_entry->next = entry->next;
		if (entry->next != NULL)
			entry->next->prev = prev_entry;
		}
	else
		{
		active_list[type] = entry->next;
		/* we were the first but not the only one */
		if (entry->next != NULL)
			entry->next->prev = NULL;
		}

	/* sanitization */
	entry->h = CK_INVALID_HANDLE;
	entry->prev = NULL;
	entry->next = NULL;
	OPENSSL_free(entry);
	}

/* Free all entries from the active list. */
void
pk11_free_active_list(PK11_OPTYPE type)
	{
	PK11_active *entry;

	/* only for asymmetric types since only they have C_Find* locks. */
	switch (type)
		{
		case OP_RSA:
		case OP_DSA:
		case OP_DH:
			break;
		default:
			return;
		}

	/* see find_lock array definition for more info on object locking */
	LOCK_OBJSTORE(type);
	while ((entry = active_list[type]) != NULL)
		pk11_active_remove(entry, type);
	UNLOCK_OBJSTORE(type);
	}

/*
 * Search for active list entry associated with given PKCS#11 object handle,
 * decrement its refcnt and if it drops to 0, disconnect the entry and free it.
 *
 * Return 1 if the PKCS#11 object associated with the entry has no references,
 * return 0 if there is at least one reference, -1 on error.
 *
 * This function presumes it is called with lock protecting the active list
 * held.
 */
int
pk11_active_delete(CK_OBJECT_HANDLE h, PK11_OPTYPE type)
	{
	PK11_active *entry = NULL;

	if ((entry = pk11_active_find(h, type)) == NULL)
		{
		PK11err(PK11_F_ACTIVE_DELETE, PK11_R_INVALID_HANDLE);
		return (-1);
		}

	OPENSSL_assert(entry->refcnt > 0);
	entry->refcnt--;
	if (entry->refcnt == 0)
		{
		pk11_active_remove(entry, type);
		return (1);
		}

	return (0);
	}

#ifndef OPENSSL_NO_RSA
/* Our internal RSA_METHOD that we provide pointers to */
static RSA_METHOD pk11_rsa =
	{
	"PKCS#11 RSA method",
	pk11_RSA_public_encrypt,		/* rsa_pub_encrypt */
	pk11_RSA_public_decrypt,		/* rsa_pub_decrypt */
	pk11_RSA_private_encrypt,		/* rsa_priv_encrypt */
	pk11_RSA_private_decrypt,		/* rsa_priv_decrypt */
	NULL,					/* rsa_mod_exp */
	NULL,					/* bn_mod_exp */
	pk11_RSA_init,				/* init */
	pk11_RSA_finish,			/* finish */
	RSA_FLAG_SIGN_VER,			/* flags */
	NULL,					/* app_data */
	pk11_RSA_sign,				/* rsa_sign */
	pk11_RSA_verify,			/* rsa_verify */
	/* Internal rsa_keygen will be used if this is NULL. */
	NULL					/* rsa_keygen */
	};

RSA_METHOD *
PK11_RSA(void)
	{
	return (&pk11_rsa);
	}
#endif

#ifndef OPENSSL_NO_DSA
/* Our internal DSA_METHOD that we provide pointers to */
static DSA_METHOD pk11_dsa =
	{
	"PKCS#11 DSA method",
	pk11_dsa_do_sign, 	/* dsa_do_sign */
	NULL, 			/* dsa_sign_setup */
	pk11_dsa_do_verify, 	/* dsa_do_verify */
	NULL,			/* dsa_mod_exp */
	NULL, 			/* bn_mod_exp */
	pk11_DSA_init, 		/* init */
	pk11_DSA_finish, 	/* finish */
	0, 			/* flags */
	NULL 			/* app_data */
	};

DSA_METHOD *
PK11_DSA(void)
	{
	return (&pk11_dsa);
	}
#endif

#ifndef OPENSSL_NO_DH
/*
 * PKCS #11 V2.20, section 11.2 specifies that the number of bytes needed for
 * output buffer may somewhat exceed the precise number of bytes needed, but
 * should not exceed it by a large amount. That may be caused, for example, by
 * rounding it up to multiple of X in the underlying bignum library. 8 should be
 * enough.
 */
#define	DH_BUF_RESERVE	8

/* Our internal DH_METHOD that we provide pointers to */
static DH_METHOD pk11_dh =
	{
	"PKCS#11 DH method",
	pk11_DH_generate_key,	/* generate_key */
	pk11_DH_compute_key,	/* compute_key */
	NULL,			/* bn_mod_exp */
	pk11_DH_init,		/* init */
	pk11_DH_finish,		/* finish */
	0,			/* flags */
	NULL,			/* app_data */
	NULL			/* generate_params */
	};

DH_METHOD *
PK11_DH(void)
	{
	return (&pk11_dh);
	}
#endif

/* Size of an SSL signature: MD5+SHA1 */
#define	SSL_SIG_LENGTH		36

/* Lengths of DSA data and signature */
#define	DSA_DATA_LEN		20
#define	DSA_SIGNATURE_LEN	40

#ifndef OPENSSL_NO_RSA
/*
 * Similar to OpenSSL to take advantage of the paddings. The goal is to
 * support all paddings in this engine although PK11 library does not
 * support all the paddings used in OpenSSL.
 * The input errors should have been checked in the padding functions.
 */
static int pk11_RSA_public_encrypt(int flen, const unsigned char *from,
		unsigned char *to, RSA *rsa, int padding)
	{
	int i, num = 0, r = -1;
	unsigned char *buf = NULL;

	num = BN_num_bytes(rsa->n);
	if ((buf = (unsigned char *)OPENSSL_malloc(num)) == NULL)
		{
		PK11err(PK11_F_RSA_PUB_ENC, PK11_R_MALLOC_FAILURE);
		goto err;
		}

	switch (padding)
		{
	case RSA_PKCS1_PADDING:
		i = RSA_padding_add_PKCS1_type_2(buf, num, from, flen);
		break;
#ifndef OPENSSL_NO_SHA
	case RSA_PKCS1_OAEP_PADDING:
		i = RSA_padding_add_PKCS1_OAEP(buf, num, from, flen, NULL, 0);
		break;
#endif
	case RSA_SSLV23_PADDING:
		i = RSA_padding_add_SSLv23(buf, num, from, flen);
		break;
	case RSA_NO_PADDING:
		i = RSA_padding_add_none(buf, num, from, flen);
		break;
	default:
		PK11err(PK11_F_RSA_PUB_ENC, PK11_R_UNKNOWN_PADDING_TYPE);
		goto err;
		}
	if (i <= 0) goto err;

	/* PK11 functions are called here */
	r = pk11_RSA_public_encrypt_low(num, buf, to, rsa);
err:
	if (buf != NULL)
		{
		OPENSSL_cleanse(buf, num);
		OPENSSL_free(buf);
		}
	return (r);
	}


/*
 * Similar to Openssl to take advantage of the paddings. The input errors
 * should be caught in the padding functions
 */
static int pk11_RSA_private_encrypt(int flen, const unsigned char *from,
	unsigned char *to, RSA *rsa, int padding)
	{
	int i, num = 0, r = -1;
	unsigned char *buf = NULL;

	num = BN_num_bytes(rsa->n);
	if ((buf = (unsigned char *)OPENSSL_malloc(num)) == NULL)
		{
		PK11err(PK11_F_RSA_PRIV_ENC, PK11_R_MALLOC_FAILURE);
		goto err;
		}

	switch (padding)
		{
	case RSA_PKCS1_PADDING:
		i = RSA_padding_add_PKCS1_type_1(buf, num, from, flen);
		break;
	case RSA_NO_PADDING:
		i = RSA_padding_add_none(buf, num, from, flen);
		break;
	case RSA_SSLV23_PADDING:
	default:
		PK11err(PK11_F_RSA_PRIV_ENC, PK11_R_UNKNOWN_PADDING_TYPE);
		goto err;
		}
	if (i <= 0) goto err;

	/* PK11 functions are called here */
	r = pk11_RSA_private_encrypt_low(num, buf, to, rsa);
err:
	if (buf != NULL)
		{
		OPENSSL_cleanse(buf, num);
		OPENSSL_free(buf);
		}
	return (r);
	}

/* Similar to OpenSSL code. Input errors are also checked here */
static int pk11_RSA_private_decrypt(int flen, const unsigned char *from,
	unsigned char *to, RSA *rsa, int padding)
	{
	BIGNUM f;
	int j, num = 0, r = -1;
	unsigned char *p;
	unsigned char *buf = NULL;

	BN_init(&f);

	num = BN_num_bytes(rsa->n);

	if ((buf = (unsigned char *)OPENSSL_malloc(num)) == NULL)
		{
		PK11err(PK11_F_RSA_PRIV_DEC, PK11_R_MALLOC_FAILURE);
		goto err;
		}

	/*
	 * This check was for equality but PGP does evil things
	 * and chops off the top '0' bytes
	 */
	if (flen > num)
		{
		PK11err(PK11_F_RSA_PRIV_DEC,
			PK11_R_DATA_GREATER_THAN_MOD_LEN);
		goto err;
		}

	/* make data into a big number */
	if (BN_bin2bn(from, (int)flen, &f) == NULL)
		goto err;

	if (BN_ucmp(&f, rsa->n) >= 0)
		{
		PK11err(PK11_F_RSA_PRIV_DEC,
			PK11_R_DATA_TOO_LARGE_FOR_MODULUS);
		goto err;
		}

	/* PK11 functions are called here */
	r = pk11_RSA_private_decrypt_low(flen, from, buf, rsa);

	/*
	 * PK11 CKM_RSA_X_509 mechanism pads 0's at the beginning.
	 * Needs to skip these 0's paddings here.
	 */
	for (j = 0; j < r; j++)
		if (buf[j] != 0)
			break;

	p = buf + j;
	j = r - j;  /* j is only used with no-padding mode */

	switch (padding)
		{
	case RSA_PKCS1_PADDING:
		r = RSA_padding_check_PKCS1_type_2(to, num, p, j, num);
		break;
#ifndef OPENSSL_NO_SHA
	case RSA_PKCS1_OAEP_PADDING:
		r = RSA_padding_check_PKCS1_OAEP(to, num, p, j, num, NULL, 0);
		break;
#endif
	case RSA_SSLV23_PADDING:
		r = RSA_padding_check_SSLv23(to, num, p, j, num);
		break;
	case RSA_NO_PADDING:
		r = RSA_padding_check_none(to, num, p, j, num);
		break;
	default:
		PK11err(PK11_F_RSA_PRIV_DEC, PK11_R_UNKNOWN_PADDING_TYPE);
		goto err;
		}
	if (r < 0)
		PK11err(PK11_F_RSA_PRIV_DEC, PK11_R_PADDING_CHECK_FAILED);

err:
	BN_clear_free(&f);
	if (buf != NULL)
		{
		OPENSSL_cleanse(buf, num);
		OPENSSL_free(buf);
		}
	return (r);
	}

/* Similar to OpenSSL code. Input errors are also checked here */
static int pk11_RSA_public_decrypt(int flen, const unsigned char *from,
	unsigned char *to, RSA *rsa, int padding)
	{
	BIGNUM f;
	int i, num = 0, r = -1;
	unsigned char *p;
	unsigned char *buf = NULL;

	BN_init(&f);
	num = BN_num_bytes(rsa->n);
	buf = (unsigned char *)OPENSSL_malloc(num);
	if (buf == NULL)
		{
		PK11err(PK11_F_RSA_PUB_DEC, PK11_R_MALLOC_FAILURE);
		goto err;
		}

	/*
	 * This check was for equality but PGP does evil things
	 * and chops off the top '0' bytes
	 */
	if (flen > num)
		{
		PK11err(PK11_F_RSA_PUB_DEC, PK11_R_DATA_GREATER_THAN_MOD_LEN);
		goto err;
		}

	if (BN_bin2bn(from, flen, &f) == NULL)
		goto err;

	if (BN_ucmp(&f, rsa->n) >= 0)
		{
		PK11err(PK11_F_RSA_PUB_DEC,
			PK11_R_DATA_TOO_LARGE_FOR_MODULUS);
		goto err;
		}

	/* PK11 functions are called here */
	r = pk11_RSA_public_decrypt_low(flen, from, buf, rsa);

	/*
	 * PK11 CKM_RSA_X_509 mechanism pads 0's at the beginning.
	 * Needs to skip these 0's here
	 */
	for (i = 0; i < r; i++)
		if (buf[i] != 0)
			break;

	p = buf + i;
	i = r - i;  /* i is only used with no-padding mode */

	switch (padding)
		{
	case RSA_PKCS1_PADDING:
		r = RSA_padding_check_PKCS1_type_1(to, num, p, i, num);
		break;
	case RSA_NO_PADDING:
		r = RSA_padding_check_none(to, num, p, i, num);
		break;
	default:
		PK11err(PK11_F_RSA_PUB_DEC, PK11_R_UNKNOWN_PADDING_TYPE);
		goto err;
		}
	if (r < 0)
		PK11err(PK11_F_RSA_PUB_DEC, PK11_R_PADDING_CHECK_FAILED);

err:
	BN_clear_free(&f);
	if (buf != NULL)
		{
		OPENSSL_cleanse(buf, num);
		OPENSSL_free(buf);
		}
	return (r);
	}

/*
 * This function implements RSA public encryption using C_EncryptInit and
 * C_Encrypt pk11 interfaces. Note that the CKM_RSA_X_509 is used here.
 * The calling function allocated sufficient memory in "to" to store results.
 */
static int pk11_RSA_public_encrypt_low(int flen,
	const unsigned char *from, unsigned char *to, RSA *rsa)
	{
	CK_ULONG bytes_encrypted = flen;
	int retval = -1;
	CK_RV rv;
	CK_MECHANISM mech_rsa = {CKM_RSA_X_509, NULL, 0};
	CK_MECHANISM *p_mech = &mech_rsa;
	CK_OBJECT_HANDLE h_pub_key = CK_INVALID_HANDLE;
	PK11_SESSION *sp;

	if ((sp = pk11_get_session(OP_RSA)) == NULL)
		return (-1);

	(void) pk11_check_new_rsa_key_pub(sp, rsa);

	h_pub_key = sp->opdata_rsa_pub_key;
	if (h_pub_key == CK_INVALID_HANDLE)
		h_pub_key = sp->opdata_rsa_pub_key =
			pk11_get_public_rsa_key(rsa, sp);

	if (h_pub_key != CK_INVALID_HANDLE)
		{
		rv = pFuncList->C_EncryptInit(sp->session, p_mech,
			h_pub_key);

		if (rv != CKR_OK)
			{
			PK11err_add_data(PK11_F_RSA_PUB_ENC_LOW,
			    PK11_R_ENCRYPTINIT, rv);
			pk11_return_session(sp, OP_RSA);
			return (-1);
			}

		rv = pFuncList->C_Encrypt(sp->session,
			(unsigned char *)from, flen, to, &bytes_encrypted);

		if (rv != CKR_OK)
			{
			PK11err_add_data(PK11_F_RSA_PUB_ENC_LOW,
			    PK11_R_ENCRYPT, rv);
			pk11_return_session(sp, OP_RSA);
			return (-1);
			}
		retval = bytes_encrypted;
		}

	pk11_return_session(sp, OP_RSA);
	return (retval);
	}


/*
 * This function implements RSA private encryption using C_SignInit and
 * C_Sign pk11 APIs. Note that CKM_RSA_X_509 is used here.
 * The calling function allocated sufficient memory in "to" to store results.
 */
static int pk11_RSA_private_encrypt_low(int flen,
	const unsigned char *from, unsigned char *to, RSA *rsa)
	{
	CK_ULONG ul_sig_len = flen;
	int retval = -1;
	CK_RV rv;
	CK_MECHANISM mech_rsa = {CKM_RSA_X_509, NULL, 0};
	CK_MECHANISM *p_mech = &mech_rsa;
	CK_OBJECT_HANDLE h_priv_key = CK_INVALID_HANDLE;
	PK11_SESSION *sp;

	if ((sp = pk11_get_session(OP_RSA)) == NULL)
		return (-1);

	(void) pk11_check_new_rsa_key_priv(sp, rsa);

	h_priv_key = sp->opdata_rsa_priv_key;
	if (h_priv_key == CK_INVALID_HANDLE)
		h_priv_key = sp->opdata_rsa_priv_key =
			pk11_get_private_rsa_key(rsa, sp);

	if (h_priv_key != CK_INVALID_HANDLE)
		{
		rv = pFuncList->C_SignInit(sp->session, p_mech,
			h_priv_key);

		if (rv != CKR_OK)
			{
			PK11err_add_data(PK11_F_RSA_PRIV_ENC_LOW,
			    PK11_R_SIGNINIT, rv);
			pk11_return_session(sp, OP_RSA);
			return (-1);
			}

		rv = pFuncList->C_Sign(sp->session,
			(unsigned char *)from, flen, to, &ul_sig_len);

		if (rv != CKR_OK)
			{
			PK11err_add_data(PK11_F_RSA_PRIV_ENC_LOW, PK11_R_SIGN,
			    rv);
			pk11_return_session(sp, OP_RSA);
			return (-1);
			}

		retval = ul_sig_len;
		}

	pk11_return_session(sp, OP_RSA);
	return (retval);
	}


/*
 * This function implements RSA private decryption using C_DecryptInit and
 * C_Decrypt pk11 APIs. Note that CKM_RSA_X_509 mechanism is used here.
 * The calling function allocated sufficient memory in "to" to store results.
 */
static int pk11_RSA_private_decrypt_low(int flen,
	const unsigned char *from, unsigned char *to, RSA *rsa)
	{
	CK_ULONG bytes_decrypted = flen;
	int retval = -1;
	CK_RV rv;
	CK_MECHANISM mech_rsa = {CKM_RSA_X_509, NULL, 0};
	CK_MECHANISM *p_mech = &mech_rsa;
	CK_OBJECT_HANDLE h_priv_key;
	PK11_SESSION *sp;

	if ((sp = pk11_get_session(OP_RSA)) == NULL)
		return (-1);

	(void) pk11_check_new_rsa_key_priv(sp, rsa);

	h_priv_key = sp->opdata_rsa_priv_key;
	if (h_priv_key == CK_INVALID_HANDLE)
		h_priv_key = sp->opdata_rsa_priv_key =
			pk11_get_private_rsa_key(rsa, sp);

	if (h_priv_key != CK_INVALID_HANDLE)
		{
		rv = pFuncList->C_DecryptInit(sp->session, p_mech,
			h_priv_key);

		if (rv != CKR_OK)
			{
			PK11err_add_data(PK11_F_RSA_PRIV_DEC_LOW,
				PK11_R_DECRYPTINIT, rv);
			pk11_return_session(sp, OP_RSA);
			return (-1);
			}

		rv = pFuncList->C_Decrypt(sp->session,
			(unsigned char *)from, flen, to, &bytes_decrypted);

		if (rv != CKR_OK)
			{
			PK11err_add_data(PK11_F_RSA_PRIV_DEC_LOW,
			    PK11_R_DECRYPT, rv);
			pk11_return_session(sp, OP_RSA);
			return (-1);
			}
		retval = bytes_decrypted;
		}

	pk11_return_session(sp, OP_RSA);
	return (retval);
	}


/*
 * This function implements RSA public decryption using C_VerifyRecoverInit
 * and C_VerifyRecover pk11 APIs. Note that CKM_RSA_X_509 is used here.
 * The calling function allocated sufficient memory in "to" to store results.
 */
static int pk11_RSA_public_decrypt_low(int flen,
	const unsigned char *from, unsigned char *to, RSA *rsa)
	{
	CK_ULONG bytes_decrypted = flen;
	int retval = -1;
	CK_RV rv;
	CK_MECHANISM mech_rsa = {CKM_RSA_X_509, NULL, 0};
	CK_MECHANISM *p_mech = &mech_rsa;
	CK_OBJECT_HANDLE h_pub_key = CK_INVALID_HANDLE;
	PK11_SESSION *sp;

	if ((sp = pk11_get_session(OP_RSA)) == NULL)
		return (-1);

	(void) pk11_check_new_rsa_key_pub(sp, rsa);

	h_pub_key = sp->opdata_rsa_pub_key;
	if (h_pub_key == CK_INVALID_HANDLE)
		h_pub_key = sp->opdata_rsa_pub_key =
			pk11_get_public_rsa_key(rsa, sp);

	if (h_pub_key != CK_INVALID_HANDLE)
		{
		rv = pFuncList->C_VerifyRecoverInit(sp->session,
			p_mech, h_pub_key);

		if (rv != CKR_OK)
			{
			PK11err_add_data(PK11_F_RSA_PUB_DEC_LOW,
				PK11_R_VERIFYRECOVERINIT, rv);
			pk11_return_session(sp, OP_RSA);
			return (-1);
			}

		rv = pFuncList->C_VerifyRecover(sp->session,
			(unsigned char *)from, flen, to, &bytes_decrypted);

		if (rv != CKR_OK)
			{
			PK11err_add_data(PK11_F_RSA_PUB_DEC_LOW,
			    PK11_R_VERIFYRECOVER, rv);
			pk11_return_session(sp, OP_RSA);
			return (-1);
			}
		retval = bytes_decrypted;
		}

	pk11_return_session(sp, OP_RSA);
	return (retval);
	}

static int pk11_RSA_init(RSA *rsa)
	{
	/*
	 * This flag in the RSA_METHOD enables the new rsa_sign,
	 * rsa_verify functions. See rsa.h for details.
	 */
	rsa->flags |= RSA_FLAG_SIGN_VER;

	return (1);
	}

static int pk11_RSA_finish(RSA *rsa)
	{
	/*
	 * Since we are overloading OpenSSL's native RSA_eay_finish() we need
	 * to do the same as in the original function, i.e. to free bignum
	 * structures.
	 */
	if (rsa->_method_mod_n != NULL)
		BN_MONT_CTX_free(rsa->_method_mod_n);
	if (rsa->_method_mod_p != NULL)
		BN_MONT_CTX_free(rsa->_method_mod_p);
	if (rsa->_method_mod_q != NULL)
		BN_MONT_CTX_free(rsa->_method_mod_q);

	return (1);
	}

/*
 * Standard engine interface function. Majority codes here are from
 * rsa/rsa_sign.c. We replaced the decrypt function call by C_Sign of PKCS#11.
 * See more details in rsa/rsa_sign.c
 */
static int pk11_RSA_sign(int type, const unsigned char *m, unsigned int m_len,
	unsigned char *sigret, unsigned int *siglen, const RSA *rsa)
	{
	X509_SIG sig;
	ASN1_TYPE parameter;
	int i, j;
	unsigned char *p, *s = NULL;
	X509_ALGOR algor;
	ASN1_OCTET_STRING digest;
	CK_RV rv;
	CK_MECHANISM mech_rsa = {CKM_RSA_PKCS, NULL, 0};
	CK_MECHANISM *p_mech = &mech_rsa;
	CK_OBJECT_HANDLE h_priv_key;
	PK11_SESSION *sp = NULL;
	int ret = 0;
	unsigned long ulsiglen;

	/* Encode the digest */
	/* Special case: SSL signature, just check the length */
	if (type == NID_md5_sha1)
		{
		if (m_len != SSL_SIG_LENGTH)
			{
			PK11err(PK11_F_RSA_SIGN,
				PK11_R_INVALID_MESSAGE_LENGTH);
			goto err;
			}
		i = SSL_SIG_LENGTH;
		s = (unsigned char *)m;
		}
	else
		{
		sig.algor = &algor;
		sig.algor->algorithm = OBJ_nid2obj(type);
		if (sig.algor->algorithm == NULL)
			{
			PK11err(PK11_F_RSA_SIGN,
				PK11_R_UNKNOWN_ALGORITHM_TYPE);
			goto err;
			}
		if (sig.algor->algorithm->length == 0)
			{
			PK11err(PK11_F_RSA_SIGN,
				PK11_R_UNKNOWN_ASN1_OBJECT_ID);
			goto err;
			}
		parameter.type = V_ASN1_NULL;
		parameter.value.ptr = NULL;
		sig.algor->parameter = &parameter;

		sig.digest = &digest;
		sig.digest->data = (unsigned char *)m;
		sig.digest->length = m_len;

		i = i2d_X509_SIG(&sig, NULL);
		}

	j = RSA_size(rsa);
	if ((i - RSA_PKCS1_PADDING) > j)
		{
		PK11err(PK11_F_RSA_SIGN, PK11_R_DIGEST_TOO_BIG);
		goto err;
		}

	if (type != NID_md5_sha1)
		{
		s = (unsigned char *)OPENSSL_malloc((unsigned int)(j + 1));
		if (s == NULL)
			{
			PK11err(PK11_F_RSA_SIGN, PK11_R_MALLOC_FAILURE);
			goto err;
			}
		p = s;
		(void) i2d_X509_SIG(&sig, &p);
		}

	if ((sp = pk11_get_session(OP_RSA)) == NULL)
		goto err;

	(void) pk11_check_new_rsa_key_priv(sp, rsa);

	h_priv_key = sp->opdata_rsa_priv_key;
	if (h_priv_key == CK_INVALID_HANDLE)
		h_priv_key = sp->opdata_rsa_priv_key =
			pk11_get_private_rsa_key((RSA *)rsa, sp);

	if (h_priv_key != CK_INVALID_HANDLE)
		{
		rv = pFuncList->C_SignInit(sp->session, p_mech, h_priv_key);

		if (rv != CKR_OK)
			{
			PK11err_add_data(PK11_F_RSA_SIGN, PK11_R_SIGNINIT, rv);
			goto err;
			}

		ulsiglen = j;
		rv = pFuncList->C_Sign(sp->session, s, i, sigret,
			(CK_ULONG_PTR) &ulsiglen);
		*siglen = ulsiglen;

		if (rv != CKR_OK)
			{
			PK11err_add_data(PK11_F_RSA_SIGN, PK11_R_SIGN, rv);
			goto err;
			}
		ret = 1;
		}

err:
	if (type != NID_md5_sha1)
		{
		(void) memset(s, 0, (unsigned int)(j + 1));
		OPENSSL_free(s);
		}

	pk11_return_session(sp, OP_RSA);
	return (ret);
	}

static int pk11_RSA_verify(int type, const unsigned char *m,
	unsigned int m_len, const unsigned char *sigbuf, unsigned int siglen,
	const RSA *rsa)
	{
	X509_SIG sig;
	ASN1_TYPE parameter;
	int i, j;
	unsigned char *p, *s = NULL;
	X509_ALGOR algor;
	ASN1_OCTET_STRING digest;
	CK_RV rv;
	CK_MECHANISM mech_rsa = {CKM_RSA_PKCS, NULL, 0};
	CK_MECHANISM *p_mech = &mech_rsa;
	CK_OBJECT_HANDLE h_pub_key;
	PK11_SESSION *sp = NULL;
	int ret = 0;

	/* Encode the digest	*/
	/* Special case: SSL signature, just check the length */
	if (type == NID_md5_sha1)
		{
		if (m_len != SSL_SIG_LENGTH)
			{
			PK11err(PK11_F_RSA_VERIFY,
				PK11_R_INVALID_MESSAGE_LENGTH);
			goto err;
			}
		i = SSL_SIG_LENGTH;
		s = (unsigned char *)m;
		}
	else
		{
		sig.algor = &algor;
		sig.algor->algorithm = OBJ_nid2obj(type);
		if (sig.algor->algorithm == NULL)
			{
			PK11err(PK11_F_RSA_VERIFY,
				PK11_R_UNKNOWN_ALGORITHM_TYPE);
			goto err;
			}
		if (sig.algor->algorithm->length == 0)
			{
			PK11err(PK11_F_RSA_VERIFY,
				PK11_R_UNKNOWN_ASN1_OBJECT_ID);
			goto err;
			}
		parameter.type = V_ASN1_NULL;
		parameter.value.ptr = NULL;
		sig.algor->parameter = &parameter;
		sig.digest = &digest;
		sig.digest->data = (unsigned char *)m;
		sig.digest->length = m_len;
		i = i2d_X509_SIG(&sig, NULL);
		}

	j = RSA_size(rsa);
	if ((i - RSA_PKCS1_PADDING) > j)
		{
		PK11err(PK11_F_RSA_VERIFY, PK11_R_DIGEST_TOO_BIG);
		goto err;
		}

	if (type != NID_md5_sha1)
		{
		s = (unsigned char *)OPENSSL_malloc((unsigned int)(j + 1));
		if (s == NULL)
			{
			PK11err(PK11_F_RSA_VERIFY, PK11_R_MALLOC_FAILURE);
			goto err;
			}
		p = s;
		(void) i2d_X509_SIG(&sig, &p);
		}

	if ((sp = pk11_get_session(OP_RSA)) == NULL)
		goto err;

	(void) pk11_check_new_rsa_key_pub(sp, rsa);

	h_pub_key = sp->opdata_rsa_pub_key;
	if (h_pub_key == CK_INVALID_HANDLE)
		h_pub_key = sp->opdata_rsa_pub_key =
			pk11_get_public_rsa_key((RSA *)rsa, sp);

	if (h_pub_key != CK_INVALID_HANDLE)
		{
		rv = pFuncList->C_VerifyInit(sp->session, p_mech,
			h_pub_key);

		if (rv != CKR_OK)
			{
			PK11err_add_data(PK11_F_RSA_VERIFY, PK11_R_VERIFYINIT,
			    rv);
			goto err;
			}
		rv = pFuncList->C_Verify(sp->session, s, i,
			(CK_BYTE_PTR)sigbuf, (CK_ULONG)siglen);

		if (rv != CKR_OK)
			{
			PK11err_add_data(PK11_F_RSA_VERIFY, PK11_R_VERIFY, rv);
			goto err;
			}
		ret = 1;
		}

err:
	if (type != NID_md5_sha1)
		{
		(void) memset(s, 0, (unsigned int)siglen);
		OPENSSL_free(s);
		}

	pk11_return_session(sp, OP_RSA);
	return (ret);
	}

#define	MAXATTR	1024
/*
 * Load RSA private key from a file or get its PKCS#11 handle if stored in the
 * PKCS#11 token.
 */
/* ARGSUSED */
EVP_PKEY *pk11_load_privkey(ENGINE* e, const char *privkey_id,
	UI_METHOD *ui_method, void *callback_data)
	{
	EVP_PKEY *pkey = NULL;
	FILE *privkey;
	CK_OBJECT_HANDLE  h_priv_key = CK_INVALID_HANDLE;
	RSA *rsa = NULL;
	PK11_SESSION *sp;
	/* Anything else below is needed for the key by reference extension. */
	const char *file;
	int ret;
	pkcs11_uri uri_struct;
	CK_RV rv;
	CK_BBOOL is_token = CK_TRUE;
	CK_BBOOL rollback = CK_FALSE;
	CK_BYTE attr_data[8][MAXATTR];
	CK_OBJECT_CLASS key_class = CKO_PRIVATE_KEY;
	CK_OBJECT_HANDLE ks_key = CK_INVALID_HANDLE;	/* key in keystore */

	/* We look for private keys only. */
	CK_ATTRIBUTE search_templ[] =
		{
		{CKA_TOKEN, &is_token, sizeof (is_token)},
		{CKA_CLASS, &key_class, sizeof (key_class)},
		{CKA_LABEL, NULL, 0}
		};

	/*
	 * These public attributes are needed to initialize the OpenSSL RSA
	 * structure with something we can use to look up the key. Note that we
	 * never ask for private components.
	 */
	CK_ATTRIBUTE get_templ[] =
		{
		{CKA_MODULUS, (void *)attr_data[0], MAXATTR},		/* n */
		{CKA_PUBLIC_EXPONENT, (void *)attr_data[1], MAXATTR},	/* e */
		};

	if ((sp = pk11_get_session(OP_RSA)) == NULL)
		return (NULL);

	/*
	 * The next function will decide whether we are going to access keys in
	 * the token or read them from plain files. It all depends on what is in
	 * the 'privkey_id' parameter.
	 */
	ret = pk11_process_pkcs11_uri(privkey_id, &uri_struct, &file);

	if (ret == 0)
		goto err;

	/* We will try to access a key from a PKCS#11 token. */
	if (ret == 1)
		{
		if (pk11_check_token_attrs(&uri_struct) == 0)
			goto err;

		search_templ[2].pValue = uri_struct.object;
		search_templ[2].ulValueLen = strlen(search_templ[2].pValue);

		if (pk11_token_login(sp->session, &pk11_login_done,
		    &uri_struct, CK_TRUE) == 0)
			goto err;

		/*
		 * Now let's try to find the key in the token. It is a failure
		 * if we can't find it.
		 */
		if (find_one_object(OP_RSA, sp->session, search_templ, 3,
		    &ks_key) == 0)
			goto err;

		/*
		 * Free the structure now. Note that we use uri_struct's field
		 * directly in the template so we cannot free it until the find
		 * is done.
		 */
		pk11_free_pkcs11_uri(&uri_struct, 0);

		/*
		 * We might have a cache hit which we could confirm according to
		 * the 'n'/'e' params, RSA public pointer as NULL, and non-NULL
		 * RSA private pointer. However, it is easier just to recreate
		 * everything. We expect the keys to be loaded once and used
		 * many times. We do not check the return value because even in
		 * case of failure the sp structure will have both key pointer
		 * and object handle cleaned and pk11_destroy_object() reports
		 * the failure to the OpenSSL error message buffer.
		 */
		(void) pk11_destroy_rsa_object_priv(sp, CK_TRUE);

		sp->opdata_rsa_priv_key = ks_key;
		/* This object shall not be deleted on a cache miss. */
		sp->persistent = CK_TRUE;

		if ((rsa = sp->opdata_rsa_priv = RSA_new_method(e)) == NULL)
			goto err;

		if ((rv = pFuncList->C_GetAttributeValue(sp->session, ks_key,
		    get_templ, 2)) != CKR_OK)
			{
			PK11err_add_data(PK11_F_LOAD_PRIVKEY,
			    PK11_R_GETATTRIBUTVALUE, rv);
			goto err;
			}

		/*
		 * Cache the RSA private structure pointer. We do not use it now
		 * for key-by-ref keys but let's do it for consistency reasons.
		 */
		sp->opdata_rsa_priv = rsa;

		/*
		 * We do not use pk11_get_private_rsa_key() here so we must take
		 * care of handle management ourselves.
		 */
		KEY_HANDLE_REFHOLD(ks_key, OP_RSA, CK_FALSE, rollback, err);

		/*
		 * Those are the sensitive components we do not want to export
		 * from the token at all: rsa->(d|p|q|dmp1|dmq1|iqmp).
		 */
		attr_to_BN(&get_templ[0], attr_data[0], &rsa->n);
		attr_to_BN(&get_templ[1], attr_data[1], &rsa->e);
		/*
		 * Must have 'n'/'e' components in the session structure as
		 * well. They serve as a public look-up key for the private key
		 * in the keystore.
		 */
		attr_to_BN(&get_templ[0], attr_data[0], &sp->opdata_rsa_n_num);
		attr_to_BN(&get_templ[1], attr_data[1], &sp->opdata_rsa_e_num);

		if ((pkey = EVP_PKEY_new()) == NULL)
			goto err;

		if (EVP_PKEY_set1_RSA(pkey, rsa) == 0)
			goto err;
		}
	else
		if ((privkey = fopen(file, read_mode_flags)) != NULL)
			{
			pkey = PEM_read_PrivateKey(privkey, NULL, NULL, NULL);
			(void) fclose(privkey);
			if (pkey != NULL)
				{
				rsa = EVP_PKEY_get1_RSA(pkey);
				if (rsa != NULL)
					{
					(void) pk11_check_new_rsa_key_priv(sp,
					    rsa);

					h_priv_key = sp->opdata_rsa_priv_key =
					    pk11_get_private_rsa_key(rsa, sp);
					if (h_priv_key == CK_INVALID_HANDLE)
						goto err;
					}
				else
					goto err;
				}
			}

	pk11_return_session(sp, OP_RSA);
	return (pkey);
err:
	if (rsa != NULL)
		RSA_free(rsa);
	if (pkey != NULL)
		{
		EVP_PKEY_free(pkey);
		pkey = NULL;
		}
	return (pkey);
	}

/* Load RSA public key from a file or load it from the PKCS#11 token. */
/* ARGSUSED */
EVP_PKEY *pk11_load_pubkey(ENGINE* e, const char *pubkey_id,
	UI_METHOD *ui_method, void *callback_data)
	{
	EVP_PKEY *pkey = NULL;
	FILE *pubkey;
	CK_OBJECT_HANDLE  h_pub_key = CK_INVALID_HANDLE;
	RSA *rsa = NULL;
	PK11_SESSION *sp;
	/* everything else below needed for key by reference extension */
	int ret;
	const char *file;
	pkcs11_uri uri_struct;
	CK_RV rv;
	CK_BBOOL is_token = CK_TRUE;
	CK_BYTE attr_data[2][MAXATTR];
	CK_OBJECT_CLASS key_class = CKO_PUBLIC_KEY;
	CK_OBJECT_HANDLE ks_key = CK_INVALID_HANDLE;	/* key in keystore */

	CK_ATTRIBUTE search_templ[] =
		{
		{CKA_TOKEN, &is_token, sizeof (is_token)},
		{CKA_CLASS, &key_class, sizeof (key_class)},
		{CKA_LABEL, NULL, 0}
		};

	/*
	 * These public attributes are needed to initialize OpenSSL RSA
	 * structure with something we can use to look up the key.
	 */
	CK_ATTRIBUTE get_templ[] =
		{
		{CKA_MODULUS, (void *)attr_data[0], MAXATTR},		/* n */
		{CKA_PUBLIC_EXPONENT, (void *)attr_data[1], MAXATTR},	/* e */
		};

	if ((sp = pk11_get_session(OP_RSA)) == NULL)
		return (NULL);

	ret = pk11_process_pkcs11_uri(pubkey_id, &uri_struct, &file);

	if (ret == 0)
		goto err;

	if (ret == 1)
		{
		if (pk11_check_token_attrs(&uri_struct) == 0)
			goto err;

		search_templ[2].pValue = uri_struct.object;
		search_templ[2].ulValueLen = strlen(search_templ[2].pValue);

		if (pk11_token_login(sp->session, &pk11_login_done,
		    &uri_struct, CK_FALSE) == 0)
			goto err;

		if (find_one_object(OP_RSA, sp->session, search_templ, 3,
		    &ks_key) == 0)
			{
			goto err;
			}

		/*
		 * Free the structure now. Note that we use uri_struct's field
		 * directly in the template so we can't free until find is done.
		 */
		pk11_free_pkcs11_uri(&uri_struct, 0);
		/*
		 * We load a new public key so we will create a new RSA
		 * structure. No cache hit is possible.
		 */
		(void) pk11_destroy_rsa_object_pub(sp, CK_TRUE);
		sp->opdata_rsa_pub_key = ks_key;

		if ((rsa = sp->opdata_rsa_pub = RSA_new_method(e)) == NULL)
			goto err;

		if ((rv = pFuncList->C_GetAttributeValue(sp->session, ks_key,
		    get_templ, 2)) != CKR_OK)
			{
			PK11err_add_data(PK11_F_LOAD_PUBKEY,
			    PK11_R_GETATTRIBUTVALUE, rv);
			goto err;
			}

		/*
		 * Cache the RSA public structure pointer.
		 */
		sp->opdata_rsa_pub = rsa;

		/*
		 * These are the sensitive components we do not want to export
		 * from the token at all: rsa->(d|p|q|dmp1|dmq1|iqmp).
		 */
		attr_to_BN(&get_templ[0], attr_data[0], &rsa->n);
		attr_to_BN(&get_templ[1], attr_data[1], &rsa->e);

		if ((pkey = EVP_PKEY_new()) == NULL)
			goto err;

		if (EVP_PKEY_set1_RSA(pkey, rsa) == 0)
			goto err;

		/*
		 * Create a session object from it so that when calling
		 * pk11_get_public_rsa_key() the next time, we can find it. The
		 * reason why we do that is that we cannot tell from the RSA
		 * structure (OpenSSL RSA structure does not have any room for
		 * additional data used by the engine, for example) if it bears
		 * a public key stored in the keystore or not so it's better if
		 * we always have a session key. Note that this is different
		 * from what we do for the private keystore objects but in that
		 * case, we can tell from the RSA structure that the keystore
		 * object is in play - the 'd' component is NULL in that case.
		 */
		h_pub_key = sp->opdata_rsa_pub_key =
		    pk11_get_public_rsa_key(rsa, sp);
		if (h_pub_key == CK_INVALID_HANDLE)
			goto err;
		}
	else
		if ((pubkey = fopen(file, read_mode_flags)) != NULL)
			{
			pkey = PEM_read_PUBKEY(pubkey, NULL, NULL, NULL);
			(void) fclose(pubkey);
			if (pkey != NULL)
				{
				rsa = EVP_PKEY_get1_RSA(pkey);
				if (rsa != NULL)
					{
					/*
					 * This will always destroy the RSA
					 * object since we have a new RSA
					 * structure here.
					 */
					(void) pk11_check_new_rsa_key_pub(sp,
					    rsa);

					h_pub_key = sp->opdata_rsa_pub_key =
					    pk11_get_public_rsa_key(rsa, sp);
					if (h_pub_key == CK_INVALID_HANDLE)
						{
						EVP_PKEY_free(pkey);
						pkey = NULL;
						}
					}
				else
					{
					EVP_PKEY_free(pkey);
					pkey = NULL;
					}
				}
			}

	pk11_return_session(sp, OP_RSA);
	return (pkey);
err:
	if (rsa != NULL)
		RSA_free(rsa);
	if (pkey != NULL)
		{
		EVP_PKEY_free(pkey);
		pkey = NULL;
		}
	return (pkey);
	}

/*
 * Get a public key object in a session from a given rsa structure. If the
 * PKCS#11 session object already exists it is found, reused, and
 * the counter in the active object list incremented. If not found, a new
 * session object is created and put also onto the active object list.
 *
 * We use the session field from sp, and we cache rsa->(n|e) in
 * opdata_rsa_(n|e|d)_num, respectively.
 */
static CK_OBJECT_HANDLE
pk11_get_public_rsa_key(RSA* rsa, PK11_SESSION *sp)
	{
	CK_RV rv;
	CK_OBJECT_HANDLE h_key = CK_INVALID_HANDLE;
	CK_ULONG found;
	CK_OBJECT_CLASS o_key = CKO_PUBLIC_KEY;
	CK_KEY_TYPE k_type = CKK_RSA;
	CK_ULONG ul_key_attr_count = 7;
	CK_BBOOL rollback = CK_FALSE;

	CK_ATTRIBUTE  a_key_template[] =
		{
		{CKA_CLASS, (void *) NULL, sizeof (CK_OBJECT_CLASS)},
		{CKA_KEY_TYPE, (void *) NULL, sizeof (CK_KEY_TYPE)},
		{CKA_TOKEN, &pk11_false, sizeof (pk11_false)},
		{CKA_ENCRYPT, &pk11_true, sizeof (pk11_true)},
		{CKA_VERIFY_RECOVER, &pk11_true, sizeof (pk11_true)},
		{CKA_MODULUS, (void *)NULL, 0},
		{CKA_PUBLIC_EXPONENT, (void *)NULL, 0}
		};

	int i;

	a_key_template[0].pValue = &o_key;
	a_key_template[1].pValue = &k_type;

	a_key_template[5].ulValueLen = BN_num_bytes(rsa->n);
	a_key_template[5].pValue = (CK_VOID_PTR)OPENSSL_malloc(
		(size_t)a_key_template[5].ulValueLen);
	if (a_key_template[5].pValue == NULL)
		{
		PK11err(PK11_F_GET_PUB_RSA_KEY, PK11_R_MALLOC_FAILURE);
		goto malloc_err;
		}

	BN_bn2bin(rsa->n, a_key_template[5].pValue);

	a_key_template[6].ulValueLen = BN_num_bytes(rsa->e);
	a_key_template[6].pValue = (CK_VOID_PTR)OPENSSL_malloc(
		(size_t)a_key_template[6].ulValueLen);
	if (a_key_template[6].pValue == NULL)
		{
		PK11err(PK11_F_GET_PUB_RSA_KEY, PK11_R_MALLOC_FAILURE);
		goto malloc_err;
		}

	BN_bn2bin(rsa->e, a_key_template[6].pValue);

	/* see find_lock array definition for more info on object locking */
	LOCK_OBJSTORE(OP_RSA);

	rv = pFuncList->C_FindObjectsInit(sp->session, a_key_template,
		ul_key_attr_count);

	if (rv != CKR_OK)
		{
		PK11err_add_data(PK11_F_GET_PUB_RSA_KEY,
		    PK11_R_FINDOBJECTSINIT, rv);
		goto err;
		}

	rv = pFuncList->C_FindObjects(sp->session, &h_key, 1, &found);

	if (rv != CKR_OK)
		{
		PK11err_add_data(PK11_F_GET_PUB_RSA_KEY,
		    PK11_R_FINDOBJECTS, rv);
		goto err;
		}

	rv = pFuncList->C_FindObjectsFinal(sp->session);

	if (rv != CKR_OK)
		{
		PK11err_add_data(PK11_F_GET_PUB_RSA_KEY,
		    PK11_R_FINDOBJECTSFINAL, rv);
		goto err;
		}

	if (found == 0)
		{
		rv = pFuncList->C_CreateObject(sp->session,
			a_key_template, ul_key_attr_count, &h_key);
		if (rv != CKR_OK)
			{
			PK11err_add_data(PK11_F_GET_PUB_RSA_KEY,
			    PK11_R_CREATEOBJECT, rv);
			goto err;
			}
		}

	if ((sp->opdata_rsa_n_num = BN_dup(rsa->n)) == NULL)
		{
		PK11err(PK11_F_GET_PUB_RSA_KEY, PK11_R_MALLOC_FAILURE);
		rollback = CK_TRUE;
		goto err;
		}

	if ((sp->opdata_rsa_e_num = BN_dup(rsa->e)) == NULL)
		{
		PK11err(PK11_F_GET_PUB_RSA_KEY, PK11_R_MALLOC_FAILURE);
		BN_free(sp->opdata_rsa_n_num);
		sp->opdata_rsa_n_num = NULL;
		rollback = CK_TRUE;
		goto err;
		}

	/* LINTED: E_CONSTANT_CONDITION */
	KEY_HANDLE_REFHOLD(h_key, OP_RSA, CK_FALSE, rollback, err);
	sp->opdata_rsa_pub = rsa;

err:
	if (rollback)
		{
		/*
		 * We do not care about the return value from C_DestroyObject()
		 * since we are doing rollback.
		 */
		if (found == 0)
			(void) pFuncList->C_DestroyObject(sp->session, h_key);
		h_key = CK_INVALID_HANDLE;
		}

	UNLOCK_OBJSTORE(OP_RSA);

malloc_err:
	for (i = 5; i <= 6; i++)
		{
		if (a_key_template[i].pValue != NULL)
			{
			OPENSSL_free(a_key_template[i].pValue);
			a_key_template[i].pValue = NULL;
			}
		}

	return (h_key);
	}

/*
 * Function similar to pk11_get_public_rsa_key(). In addition to 'n' and 'e'
 * components, it also caches 'd' if present. Note that if RSA keys by reference
 * are used, 'd' is never extracted from the token in which case it would be
 * NULL here.
 */
static CK_OBJECT_HANDLE
pk11_get_private_rsa_key(RSA* rsa, PK11_SESSION *sp)
	{
	CK_RV rv;
	CK_OBJECT_HANDLE h_key = CK_INVALID_HANDLE;
	int i;
	CK_ULONG found;
	CK_OBJECT_CLASS o_key = CKO_PRIVATE_KEY;
	CK_KEY_TYPE k_type = CKK_RSA;
	CK_ULONG ul_key_attr_count = 14;
	CK_BBOOL rollback = CK_FALSE;

	/*
	 * Both CKA_TOKEN and CKA_SENSITIVE have to be CK_FALSE for session keys
	 */
	CK_ATTRIBUTE  a_key_template[] =
		{
		{CKA_CLASS, (void *) NULL, sizeof (CK_OBJECT_CLASS)},
		{CKA_KEY_TYPE, (void *) NULL, sizeof (CK_KEY_TYPE)},
		{CKA_TOKEN, &pk11_false, sizeof (pk11_false)},
		{CKA_SENSITIVE, &pk11_false, sizeof (pk11_false)},
		{CKA_DECRYPT, &pk11_true, sizeof (pk11_true)},
		{CKA_SIGN, &pk11_true, sizeof (pk11_true)},
		{CKA_MODULUS, (void *)NULL, 0},
		{CKA_PUBLIC_EXPONENT, (void *)NULL, 0},
		{CKA_PRIVATE_EXPONENT, (void *)NULL, 0},
		{CKA_PRIME_1, (void *)NULL, 0},
		{CKA_PRIME_2, (void *)NULL, 0},
		{CKA_EXPONENT_1, (void *)NULL, 0},
		{CKA_EXPONENT_2, (void *)NULL, 0},
		{CKA_COEFFICIENT, (void *)NULL, 0},
		};

	a_key_template[0].pValue = &o_key;
	a_key_template[1].pValue = &k_type;

	/* Put the private key components into the template */
	if (init_template_value(rsa->n, &a_key_template[6].pValue,
		&a_key_template[6].ulValueLen) == 0 ||
	    init_template_value(rsa->e, &a_key_template[7].pValue,
		&a_key_template[7].ulValueLen) == 0 ||
	    init_template_value(rsa->d, &a_key_template[8].pValue,
		&a_key_template[8].ulValueLen) == 0 ||
	    init_template_value(rsa->p, &a_key_template[9].pValue,
		&a_key_template[9].ulValueLen) == 0 ||
	    init_template_value(rsa->q, &a_key_template[10].pValue,
		&a_key_template[10].ulValueLen) == 0 ||
	    init_template_value(rsa->dmp1, &a_key_template[11].pValue,
		&a_key_template[11].ulValueLen) == 0 ||
	    init_template_value(rsa->dmq1, &a_key_template[12].pValue,
		&a_key_template[12].ulValueLen) == 0 ||
	    init_template_value(rsa->iqmp, &a_key_template[13].pValue,
		&a_key_template[13].ulValueLen) == 0)
		{
		PK11err(PK11_F_GET_PRIV_RSA_KEY, PK11_R_MALLOC_FAILURE);
		goto malloc_err;
		}

	/* see find_lock array definition for more info on object locking */
	LOCK_OBJSTORE(OP_RSA);

	/*
	 * We are getting the private key but the private 'd' component is NULL.
	 * That means this is key by reference RSA key. In that case, we can
	 * use only public components for searching for the private key handle.
	 */
	if (rsa->d == NULL)
		{
		ul_key_attr_count = 8;
		/*
		 * We will perform the search in the token, not in the existing
		 * session keys.
		 */
		a_key_template[2].pValue = &pk11_true;
		}

	rv = pFuncList->C_FindObjectsInit(sp->session, a_key_template,
		ul_key_attr_count);

	if (rv != CKR_OK)
		{
		PK11err_add_data(PK11_F_GET_PRIV_RSA_KEY,
		    PK11_R_FINDOBJECTSINIT, rv);
		goto err;
		}

	rv = pFuncList->C_FindObjects(sp->session, &h_key, 1, &found);

	if (rv != CKR_OK)
		{
		PK11err_add_data(PK11_F_GET_PRIV_RSA_KEY,
		    PK11_R_FINDOBJECTS, rv);
		goto err;
		}

	rv = pFuncList->C_FindObjectsFinal(sp->session);

	if (rv != CKR_OK)
		{
		PK11err_add_data(PK11_F_GET_PRIV_RSA_KEY,
		    PK11_R_FINDOBJECTSFINAL, rv);
		goto err;
		}

	if (found == 0)
		{
		/*
		 * We have an RSA structure with 'n'/'e' components only so we
		 * tried to find the private key in the keystore. If it was
		 * really a token key we have a problem. Note that for other key
		 * types we just create a new session key using the private
		 * components from the RSA structure.
		 */
		if (rsa->d == NULL)
			{
			PK11err(PK11_F_GET_PRIV_RSA_KEY,
			    PK11_R_PRIV_KEY_NOT_FOUND);
			goto err;
			}

		rv = pFuncList->C_CreateObject(sp->session,
			a_key_template, ul_key_attr_count, &h_key);
		if (rv != CKR_OK)
			{
			PK11err_add_data(PK11_F_GET_PRIV_RSA_KEY,
				PK11_R_CREATEOBJECT, rv);
			goto err;
			}
		}

	/*
	 * When RSA keys by reference code is used, we never extract private
	 * components from the keystore. In that case 'd' was set to NULL and we
	 * expect the application to properly cope with that. It is documented
	 * in openssl(5). In general, if keys by reference are used we expect it
	 * to be used exclusively using the high level API and then there is no
	 * problem. If the application expects the private components to be read
	 * from the keystore then that is not a supported way of usage.
	 */
	if (rsa->d != NULL)
		{
		if ((sp->opdata_rsa_d_num = BN_dup(rsa->d)) == NULL)
			{
			PK11err(PK11_F_GET_PRIV_RSA_KEY, PK11_R_MALLOC_FAILURE);
			rollback = CK_TRUE;
			goto err;
			}
		}
	else
		sp->opdata_rsa_d_num = NULL;

	/*
	 * For the key by reference code, we need public components as well
	 * since 'd' component is always NULL. For that reason, we always cache
	 * 'n'/'e' components as well.
	 */
	if ((sp->opdata_rsa_n_num = BN_dup(rsa->n)) == NULL)
		{
		PK11err(PK11_F_GET_PUB_RSA_KEY, PK11_R_MALLOC_FAILURE);
		sp->opdata_rsa_n_num = NULL;
		rollback = CK_TRUE;
		goto err;
		}
	if ((sp->opdata_rsa_e_num = BN_dup(rsa->e)) == NULL)
		{
		PK11err(PK11_F_GET_PUB_RSA_KEY, PK11_R_MALLOC_FAILURE);
		BN_free(sp->opdata_rsa_n_num);
		sp->opdata_rsa_n_num = NULL;
		rollback = CK_TRUE;
		goto err;
		}

	/* LINTED: E_CONSTANT_CONDITION */
	KEY_HANDLE_REFHOLD(h_key, OP_RSA, CK_FALSE, rollback, err);
	sp->opdata_rsa_priv = rsa;

err:
	if (rollback)
		{
		/*
		 * We do not care about the return value from C_DestroyObject()
		 * since we are doing rollback.
		 */
		if (found == 0)
			(void) pFuncList->C_DestroyObject(sp->session, h_key);
		h_key = CK_INVALID_HANDLE;
		}

	UNLOCK_OBJSTORE(OP_RSA);

malloc_err:
	/*
	 * 6 to 13 entries in the key template are key components.
	 * They need to be freed upon exit or error.
	 */
	for (i = 6; i <= 13; i++)
		{
		if (a_key_template[i].pValue != NULL)
			{
			(void) memset(a_key_template[i].pValue, 0,
				a_key_template[i].ulValueLen);
			OPENSSL_free(a_key_template[i].pValue);
			a_key_template[i].pValue = NULL;
			}
		}

	return (h_key);
	}

/*
 * Check for cache miss. Objects are cleaned only if we have a full cache miss,
 * meaning that it's a different RSA key pair. Return 1 for cache hit, 0 for
 * cache miss.
 */
static int
pk11_check_new_rsa_key_pub(PK11_SESSION *sp, const RSA *rsa)
	{
	/*
	 * Provide protection against RSA structure reuse by making the
	 * check for cache hit stronger. Only public components of RSA
	 * key matter here so it is sufficient to compare them with values
	 * cached in PK11_SESSION structure.
	 *
	 * We must check the handle as well since with key by reference, public
	 * components 'n'/'e' are cached in private keys as well. That means we
	 * could have a cache hit in a private key when looking for a public
	 * key. That would not work, you cannot have one PKCS#11 object for
	 * both data signing and verifying.
	 */
	if (sp->opdata_rsa_pub == rsa &&
	    BN_cmp(sp->opdata_rsa_n_num, rsa->n) == 0 &&
	    BN_cmp(sp->opdata_rsa_e_num, rsa->e) == 0)
		{
		if (sp->opdata_rsa_pub_key != CK_INVALID_HANDLE)
			return (1);
		else
			/*
			 * No public key object yet but we have the right RSA
			 * structure with potentially existing private key
			 * object. We can just create a public object and move
			 * on with this session structure.
			 */
			return (0);
		}

	/*
	 * A different RSA key pair was using this session structure previously
	 * or it's an empty structure. Destroy what we can.
	 */
	(void) pk11_destroy_rsa_object_pub(sp, CK_TRUE);
	(void) pk11_destroy_rsa_object_priv(sp, CK_TRUE);
	return (0);
	}

/*
 * Check for cache miss. Objects are cleaned only if we have a full cache miss,
 * meaning that it's a different RSA key pair. Return 1 for cache hit, 0 for
 * cache miss.
 */
static int
pk11_check_new_rsa_key_priv(PK11_SESSION *sp, const RSA *rsa)
	{
	/*
	 * Provide protection against RSA structure reuse by making the
	 * check for cache hit stronger. Comparing public exponent of RSA
	 * key with value cached in PK11_SESSION structure should
	 * be sufficient. Note that we want to compare the public component
	 * since with the keys by reference mechanism, private components are
	 * not in the RSA structure. Also, see pk11_check_new_rsa_key_pub()
	 * about why we compare the handle as well.
	 */
	if (sp->opdata_rsa_priv == rsa &&
	    BN_cmp(sp->opdata_rsa_n_num, rsa->n) == 0 &&
	    BN_cmp(sp->opdata_rsa_e_num, rsa->e) == 0)
		{
		if (sp->opdata_rsa_priv_key != CK_INVALID_HANDLE)
			return (1);
		else
			/*
			 * No private key object yet but we have the right RSA
			 * structure with potentially existing public key
			 * object. We can just create a private object and move
			 * on with this session structure.
			 */
			return (0);
		}

	/*
	 * A different RSA key pair was using this session structure previously
	 * or it's an empty structure. Destroy what we can.
	 */
	(void) pk11_destroy_rsa_object_priv(sp, CK_TRUE);
	(void) pk11_destroy_rsa_object_pub(sp, CK_TRUE);
	return (0);
	}
#endif

#ifndef OPENSSL_NO_DSA
/* The DSA function implementation */
/* ARGSUSED */
static int pk11_DSA_init(DSA *dsa)
	{
	return (1);
	}

/* ARGSUSED */
static int pk11_DSA_finish(DSA *dsa)
	{
	return (1);
	}


static DSA_SIG *
pk11_dsa_do_sign(const unsigned char *dgst, int dlen, DSA *dsa)
	{
	BIGNUM *r = NULL, *s = NULL;
	int i;
	DSA_SIG *dsa_sig = NULL;

	CK_RV rv;
	CK_MECHANISM Mechanism_dsa = {CKM_DSA, NULL, 0};
	CK_MECHANISM *p_mech = &Mechanism_dsa;
	CK_OBJECT_HANDLE h_priv_key;

	/*
	 * The signature is the concatenation of r and s,
	 * each is 20 bytes long
	 */
	unsigned char sigret[DSA_SIGNATURE_LEN];
	unsigned long siglen = DSA_SIGNATURE_LEN;
	unsigned int siglen2 = DSA_SIGNATURE_LEN / 2;

	PK11_SESSION *sp = NULL;

	if ((dsa->p == NULL) || (dsa->q == NULL) || (dsa->g == NULL))
		{
		PK11err(PK11_F_DSA_SIGN, PK11_R_MISSING_KEY_COMPONENT);
		goto ret;
		}

	i = BN_num_bytes(dsa->q); /* should be 20 */
	if (dlen > i)
		{
		PK11err(PK11_F_DSA_SIGN, PK11_R_INVALID_SIGNATURE_LENGTH);
		goto ret;
		}

	if ((sp = pk11_get_session(OP_DSA)) == NULL)
		goto ret;

	(void) check_new_dsa_key_priv(sp, dsa);

	h_priv_key = sp->opdata_dsa_priv_key;
	if (h_priv_key == CK_INVALID_HANDLE)
		h_priv_key = sp->opdata_dsa_priv_key =
			pk11_get_private_dsa_key((DSA *)dsa,
			    &sp->opdata_dsa_priv,
			    &sp->opdata_dsa_priv_num, sp->session);

	if (h_priv_key != CK_INVALID_HANDLE)
		{
		rv = pFuncList->C_SignInit(sp->session, p_mech, h_priv_key);

		if (rv != CKR_OK)
			{
			PK11err_add_data(PK11_F_DSA_SIGN, PK11_R_SIGNINIT, rv);
			goto ret;
			}

			(void) memset(sigret, 0, siglen);
			rv = pFuncList->C_Sign(sp->session,
			    (unsigned char *) dgst, dlen, sigret,
			    (CK_ULONG_PTR) &siglen);

		if (rv != CKR_OK)
			{
			PK11err_add_data(PK11_F_DSA_SIGN, PK11_R_SIGN, rv);
			goto ret;
			}
		}


	if ((s = BN_new()) == NULL)
		{
		PK11err(PK11_F_DSA_SIGN, PK11_R_MALLOC_FAILURE);
		goto ret;
		}

	if ((r = BN_new()) == NULL)
		{
		PK11err(PK11_F_DSA_SIGN, PK11_R_MALLOC_FAILURE);
		goto ret;
		}

	if ((dsa_sig = DSA_SIG_new()) == NULL)
		{
		PK11err(PK11_F_DSA_SIGN, PK11_R_MALLOC_FAILURE);
		goto ret;
		}

	if (BN_bin2bn(sigret, siglen2, r) == NULL ||
	    BN_bin2bn(&sigret[siglen2], siglen2, s) == NULL)
		{
		PK11err(PK11_F_DSA_SIGN, PK11_R_MALLOC_FAILURE);
		goto ret;
		}

	dsa_sig->r = r;
	dsa_sig->s = s;

ret:
	if (dsa_sig == NULL)
		{
		if (r != NULL)
			BN_free(r);
		if (s != NULL)
			BN_free(s);
		}

	pk11_return_session(sp, OP_DSA);
	return (dsa_sig);
	}

static int
pk11_dsa_do_verify(const unsigned char *dgst, int dlen, DSA_SIG *sig,
	DSA *dsa)
	{
	int i;
	CK_RV rv;
	int retval = 0;
	CK_MECHANISM Mechanism_dsa = {CKM_DSA, NULL, 0};
	CK_MECHANISM *p_mech = &Mechanism_dsa;
	CK_OBJECT_HANDLE h_pub_key;

	unsigned char sigbuf[DSA_SIGNATURE_LEN];
	unsigned long siglen = DSA_SIGNATURE_LEN;
	unsigned long siglen2 = DSA_SIGNATURE_LEN/2;

	PK11_SESSION *sp = NULL;

	if (BN_is_zero(sig->r) || sig->r->neg || BN_ucmp(sig->r, dsa->q) >= 0)
		{
		PK11err(PK11_F_DSA_VERIFY,
			PK11_R_INVALID_DSA_SIGNATURE_R);
		goto ret;
		}

	if (BN_is_zero(sig->s) || sig->s->neg || BN_ucmp(sig->s, dsa->q) >= 0)
		{
		PK11err(PK11_F_DSA_VERIFY,
			PK11_R_INVALID_DSA_SIGNATURE_S);
		goto ret;
		}

	i = BN_num_bytes(dsa->q); /* should be 20 */

	if (dlen > i)
		{
		PK11err(PK11_F_DSA_VERIFY,
			PK11_R_INVALID_SIGNATURE_LENGTH);
		goto ret;
		}

	if ((sp = pk11_get_session(OP_DSA)) == NULL)
		goto ret;

	(void) check_new_dsa_key_pub(sp, dsa);

	h_pub_key = sp->opdata_dsa_pub_key;
	if (h_pub_key == CK_INVALID_HANDLE)
		h_pub_key = sp->opdata_dsa_pub_key =
			pk11_get_public_dsa_key((DSA *)dsa, &sp->opdata_dsa_pub,
			    &sp->opdata_dsa_pub_num, sp->session);

	if (h_pub_key != CK_INVALID_HANDLE)
		{
		rv = pFuncList->C_VerifyInit(sp->session, p_mech,
			h_pub_key);

		if (rv != CKR_OK)
			{
			PK11err_add_data(PK11_F_DSA_VERIFY, PK11_R_VERIFYINIT,
			    rv);
			goto ret;
			}

		/*
		 * The representation of each of the two big numbers could
		 * be shorter than DSA_SIGNATURE_LEN/2 bytes so we need
		 * to act accordingly and shift if necessary.
		 */
		(void) memset(sigbuf, 0, siglen);
		BN_bn2bin(sig->r, sigbuf + siglen2 - BN_num_bytes(sig->r));
		BN_bn2bin(sig->s, &sigbuf[siglen2] + siglen2 -
		    BN_num_bytes(sig->s));

		rv = pFuncList->C_Verify(sp->session,
			(unsigned char *) dgst, dlen, sigbuf, (CK_ULONG)siglen);

		if (rv != CKR_OK)
			{
			PK11err_add_data(PK11_F_DSA_VERIFY, PK11_R_VERIFY, rv);
			goto ret;
			}
		}

	retval = 1;
ret:

	pk11_return_session(sp, OP_DSA);
	return (retval);
	}


/*
 * Create a public key object in a session from a given dsa structure.
 * The *dsa_pub_num pointer is non-NULL for DSA public keys.
 */
static CK_OBJECT_HANDLE pk11_get_public_dsa_key(DSA* dsa,
    DSA **key_ptr, BIGNUM **dsa_pub_num, CK_SESSION_HANDLE session)
	{
	CK_RV rv;
	CK_OBJECT_CLASS o_key = CKO_PUBLIC_KEY;
	CK_OBJECT_HANDLE h_key = CK_INVALID_HANDLE;
	CK_ULONG found;
	CK_KEY_TYPE k_type = CKK_DSA;
	CK_ULONG ul_key_attr_count = 8;
	CK_BBOOL rollback = CK_FALSE;
	int i;

	CK_ATTRIBUTE  a_key_template[] =
		{
		{CKA_CLASS, (void *) NULL, sizeof (CK_OBJECT_CLASS)},
		{CKA_KEY_TYPE, (void *) NULL, sizeof (CK_KEY_TYPE)},
		{CKA_TOKEN, &pk11_false, sizeof (pk11_false)},
		{CKA_VERIFY, &pk11_true, sizeof (pk11_true)},
		{CKA_PRIME, (void *)NULL, 0},		/* p */
		{CKA_SUBPRIME, (void *)NULL, 0},	/* q */
		{CKA_BASE, (void *)NULL, 0},		/* g */
		{CKA_VALUE, (void *)NULL, 0}		/* pub_key - y */
		};

	a_key_template[0].pValue = &o_key;
	a_key_template[1].pValue = &k_type;

	if (init_template_value(dsa->p, &a_key_template[4].pValue,
		&a_key_template[4].ulValueLen) == 0 ||
	    init_template_value(dsa->q, &a_key_template[5].pValue,
		&a_key_template[5].ulValueLen) == 0 ||
	    init_template_value(dsa->g, &a_key_template[6].pValue,
		&a_key_template[6].ulValueLen) == 0 ||
	    init_template_value(dsa->pub_key, &a_key_template[7].pValue,
		&a_key_template[7].ulValueLen) == 0)
		{
		PK11err(PK11_F_GET_PUB_DSA_KEY, PK11_R_MALLOC_FAILURE);
		goto malloc_err;
		}

	/* see find_lock array definition for more info on object locking */
	LOCK_OBJSTORE(OP_DSA);
	rv = pFuncList->C_FindObjectsInit(session, a_key_template,
		ul_key_attr_count);

	if (rv != CKR_OK)
		{
		PK11err_add_data(PK11_F_GET_PUB_DSA_KEY,
		    PK11_R_FINDOBJECTSINIT, rv);
		goto err;
		}

	rv = pFuncList->C_FindObjects(session, &h_key, 1, &found);

	if (rv != CKR_OK)
		{
		PK11err_add_data(PK11_F_GET_PUB_DSA_KEY,
		    PK11_R_FINDOBJECTS, rv);
		goto err;
		}

	rv = pFuncList->C_FindObjectsFinal(session);

	if (rv != CKR_OK)
		{
		PK11err_add_data(PK11_F_GET_PUB_DSA_KEY,
		    PK11_R_FINDOBJECTSFINAL, rv);
		goto err;
		}

	if (found == 0)
		{
		rv = pFuncList->C_CreateObject(session,
			a_key_template, ul_key_attr_count, &h_key);
		if (rv != CKR_OK)
			{
			PK11err_add_data(PK11_F_GET_PUB_DSA_KEY,
			    PK11_R_CREATEOBJECT, rv);
			goto err;
			}
		}

	if (dsa_pub_num != NULL)
		if ((*dsa_pub_num = BN_dup(dsa->pub_key)) == NULL)
			{
			PK11err(PK11_F_GET_PUB_DSA_KEY, PK11_R_MALLOC_FAILURE);
			rollback = CK_TRUE;
			goto err;
			}

	/* LINTED: E_CONSTANT_CONDITION */
	KEY_HANDLE_REFHOLD(h_key, OP_DSA, CK_FALSE, rollback, err);
	if (key_ptr != NULL)
		*key_ptr = dsa;

err:
	if (rollback)
		{
		/*
		 * We do not care about the return value from C_DestroyObject()
		 * since we are doing rollback.
		 */
		if (found == 0)
			(void) pFuncList->C_DestroyObject(session, h_key);
		h_key = CK_INVALID_HANDLE;
		}

	UNLOCK_OBJSTORE(OP_DSA);

malloc_err:
	for (i = 4; i <= 7; i++)
		{
		if (a_key_template[i].pValue != NULL)
			{
			OPENSSL_free(a_key_template[i].pValue);
			a_key_template[i].pValue = NULL;
			}
		}

	return (h_key);
	}

/*
 * Create a private key object in the session from a given dsa structure
 * The *dsa_priv_num pointer is non-NULL for DSA private keys.
 */
static CK_OBJECT_HANDLE pk11_get_private_dsa_key(DSA* dsa,
    DSA **key_ptr, BIGNUM **dsa_priv_num, CK_SESSION_HANDLE session)
	{
	CK_RV rv;
	CK_OBJECT_HANDLE h_key = CK_INVALID_HANDLE;
	CK_OBJECT_CLASS o_key = CKO_PRIVATE_KEY;
	int i;
	CK_ULONG found;
	CK_KEY_TYPE k_type = CKK_DSA;
	CK_ULONG ul_key_attr_count = 9;
	CK_BBOOL rollback = CK_FALSE;

	/*
	 * Both CKA_TOKEN and CKA_SENSITIVE have to be CK_FALSE for session keys
	 */
	CK_ATTRIBUTE  a_key_template[] =
		{
		{CKA_CLASS, (void *) NULL, sizeof (CK_OBJECT_CLASS)},
		{CKA_KEY_TYPE, (void *) NULL, sizeof (CK_KEY_TYPE)},
		{CKA_TOKEN, &pk11_false, sizeof (pk11_false)},
		{CKA_SENSITIVE, &pk11_false, sizeof (pk11_false)},
		{CKA_SIGN, &pk11_true, sizeof (pk11_true)},
		{CKA_PRIME, (void *)NULL, 0},		/* p */
		{CKA_SUBPRIME, (void *)NULL, 0},	/* q */
		{CKA_BASE, (void *)NULL, 0},		/* g */
		{CKA_VALUE, (void *)NULL, 0}		/* priv_key - x */
		};

	a_key_template[0].pValue = &o_key;
	a_key_template[1].pValue = &k_type;

	/* Put the private key components into the template */
	if (init_template_value(dsa->p, &a_key_template[5].pValue,
		&a_key_template[5].ulValueLen) == 0 ||
	    init_template_value(dsa->q, &a_key_template[6].pValue,
		&a_key_template[6].ulValueLen) == 0 ||
	    init_template_value(dsa->g, &a_key_template[7].pValue,
		&a_key_template[7].ulValueLen) == 0 ||
	    init_template_value(dsa->priv_key, &a_key_template[8].pValue,
		&a_key_template[8].ulValueLen) == 0)
		{
		PK11err(PK11_F_GET_PRIV_DSA_KEY, PK11_R_MALLOC_FAILURE);
		goto malloc_err;
		}

	/* see find_lock array definition for more info on object locking */
	LOCK_OBJSTORE(OP_DSA);
	rv = pFuncList->C_FindObjectsInit(session, a_key_template,
		ul_key_attr_count);

	if (rv != CKR_OK)
		{
		PK11err_add_data(PK11_F_GET_PRIV_DSA_KEY,
		    PK11_R_FINDOBJECTSINIT, rv);
		goto err;
		}

	rv = pFuncList->C_FindObjects(session, &h_key, 1, &found);

	if (rv != CKR_OK)
		{
		PK11err_add_data(PK11_F_GET_PRIV_DSA_KEY,
		    PK11_R_FINDOBJECTS, rv);
		goto err;
		}

	rv = pFuncList->C_FindObjectsFinal(session);

	if (rv != CKR_OK)
		{
		PK11err_add_data(PK11_F_GET_PRIV_DSA_KEY,
		    PK11_R_FINDOBJECTSFINAL, rv);
		goto err;
		}

	if (found == 0)
		{
		rv = pFuncList->C_CreateObject(session,
			a_key_template, ul_key_attr_count, &h_key);
		if (rv != CKR_OK)
			{
			PK11err_add_data(PK11_F_GET_PRIV_DSA_KEY,
			    PK11_R_CREATEOBJECT, rv);
			goto err;
			}
		}

	if (dsa_priv_num != NULL)
		if ((*dsa_priv_num = BN_dup(dsa->priv_key)) == NULL)
			{
			PK11err(PK11_F_GET_PRIV_DSA_KEY, PK11_R_MALLOC_FAILURE);
			rollback = CK_TRUE;
			goto err;
			}

	/* LINTED: E_CONSTANT_CONDITION */
	KEY_HANDLE_REFHOLD(h_key, OP_DSA, CK_FALSE, rollback, err);
	if (key_ptr != NULL)
		*key_ptr = dsa;

err:
	if (rollback)
		{
		/*
		 * We do not care about the return value from C_DestroyObject()
		 * since we are doing rollback.
		 */
		if (found == 0)
			(void) pFuncList->C_DestroyObject(session, h_key);
		h_key = CK_INVALID_HANDLE;
		}

	UNLOCK_OBJSTORE(OP_DSA);

malloc_err:
	/*
	 * 5 to 8 entries in the key template are key components.
	 * They need to be freed apon exit or error.
	 */
	for (i = 5; i <= 8; i++)
		{
		if (a_key_template[i].pValue != NULL)
			{
			(void) memset(a_key_template[i].pValue, 0,
				a_key_template[i].ulValueLen);
			OPENSSL_free(a_key_template[i].pValue);
			a_key_template[i].pValue = NULL;
			}
		}

	return (h_key);
	}

/*
 * Check for cache miss and clean the object pointer and handle
 * in such case. Return 1 for cache hit, 0 for cache miss.
 */
static int check_new_dsa_key_pub(PK11_SESSION *sp, DSA *dsa)
	{
	/*
	 * Provide protection against DSA structure reuse by making the
	 * check for cache hit stronger. Only public key component of DSA
	 * key matters here so it is sufficient to compare it with value
	 * cached in PK11_SESSION structure.
	 */
	if ((sp->opdata_dsa_pub != dsa) ||
	    (BN_cmp(sp->opdata_dsa_pub_num, dsa->pub_key) != 0))
		{
		/*
		 * We do not check the return value because even in case of
		 * failure the sp structure will have both key pointer
		 * and object handle cleaned and pk11_destroy_object()
		 * reports the failure to the OpenSSL error message buffer.
		 */
		(void) pk11_destroy_dsa_object_pub(sp, CK_TRUE);
		return (0);
		}
	return (1);
	}

/*
 * Check for cache miss and clean the object pointer and handle
 * in such case. Return 1 for cache hit, 0 for cache miss.
 */
static int check_new_dsa_key_priv(PK11_SESSION *sp, DSA *dsa)
	{
	/*
	 * Provide protection against DSA structure reuse by making the
	 * check for cache hit stronger. Only private key component of DSA
	 * key matters here so it is sufficient to compare it with value
	 * cached in PK11_SESSION structure.
	 */
	if ((sp->opdata_dsa_priv != dsa) ||
	    (BN_cmp(sp->opdata_dsa_priv_num, dsa->priv_key) != 0))
		{
		/*
		 * We do not check the return value because even in case of
		 * failure the sp structure will have both key pointer
		 * and object handle cleaned and pk11_destroy_object()
		 * reports the failure to the OpenSSL error message buffer.
		 */
		(void) pk11_destroy_dsa_object_priv(sp, CK_TRUE);
		return (0);
		}
	return (1);
	}
#endif


#ifndef OPENSSL_NO_DH
/* The DH function implementation */
/* ARGSUSED */
static int pk11_DH_init(DH *dh)
	{
	return (1);
	}

/* ARGSUSED */
static int pk11_DH_finish(DH *dh)
	{
	return (1);
	}

/*
 * Generate DH key-pair.
 *
 * Warning: Unlike OpenSSL's DH_generate_key(3) we ignore dh->priv_key
 * and override it even if it is set. OpenSSL does not touch dh->priv_key
 * if set and just computes dh->pub_key. It looks like PKCS#11 standard
 * is not capable of providing this functionality. This could be a problem
 * for applications relying on OpenSSL's semantics.
 */
static int pk11_DH_generate_key(DH *dh)
	{
	CK_ULONG i;
	CK_RV rv, rv1;
	int reuse_mem_len = 0, ret = 0;
	PK11_SESSION *sp = NULL;
	CK_BYTE_PTR reuse_mem;

	CK_MECHANISM mechanism = {CKM_DH_PKCS_KEY_PAIR_GEN, NULL_PTR, 0};
	CK_OBJECT_HANDLE h_pub_key = CK_INVALID_HANDLE;
	CK_OBJECT_HANDLE h_priv_key = CK_INVALID_HANDLE;

	CK_ULONG ul_pub_key_attr_count = 3;
	CK_ATTRIBUTE pub_key_template[] =
		{
		{CKA_PRIVATE, &pk11_false, sizeof (pk11_false)},
		{CKA_PRIME, (void *)NULL, 0},
		{CKA_BASE, (void *)NULL, 0}
		};

	CK_ULONG ul_priv_key_attr_count = 3;
	CK_ATTRIBUTE priv_key_template[] =
		{
		{CKA_PRIVATE, &pk11_false, sizeof (pk11_false)},
		{CKA_SENSITIVE, &pk11_false, sizeof (pk11_false)},
		{CKA_DERIVE, &pk11_true, sizeof (pk11_true)}
		};

	CK_ULONG pub_key_attr_result_count = 1;
	CK_ATTRIBUTE pub_key_result[] =
		{
		{CKA_VALUE, (void *)NULL, 0}
		};

	CK_ULONG priv_key_attr_result_count = 1;
	CK_ATTRIBUTE priv_key_result[] =
		{
		{CKA_VALUE, (void *)NULL, 0}
		};

	pub_key_template[1].ulValueLen = BN_num_bytes(dh->p);
	if (pub_key_template[1].ulValueLen > 0)
		{
		/*
		 * We must not increase ulValueLen by DH_BUF_RESERVE since that
		 * could cause the same rounding problem. See definition of
		 * DH_BUF_RESERVE above.
		 */
		pub_key_template[1].pValue =
			OPENSSL_malloc(pub_key_template[1].ulValueLen +
			DH_BUF_RESERVE);
		if (pub_key_template[1].pValue == NULL)
			{
			PK11err(PK11_F_DH_GEN_KEY, PK11_R_MALLOC_FAILURE);
			goto err;
			}

		i = BN_bn2bin(dh->p, pub_key_template[1].pValue);
		}
	else
		goto err;

	pub_key_template[2].ulValueLen = BN_num_bytes(dh->g);
	if (pub_key_template[2].ulValueLen > 0)
		{
		pub_key_template[2].pValue =
			OPENSSL_malloc(pub_key_template[2].ulValueLen +
			DH_BUF_RESERVE);
		if (pub_key_template[2].pValue == NULL)
			{
			PK11err(PK11_F_DH_GEN_KEY, PK11_R_MALLOC_FAILURE);
			goto err;
			}

		i = BN_bn2bin(dh->g, pub_key_template[2].pValue);
		}
	else
		goto err;

	/*
	 * Note: we are only using PK11_SESSION structure for getting
	 *	 a session handle. The objects created in this function are
	 *	 destroyed before return and thus not cached.
	 */
	if ((sp = pk11_get_session(OP_DH)) == NULL)
		goto err;

	rv = pFuncList->C_GenerateKeyPair(sp->session,
	    &mechanism,
	    pub_key_template,
	    ul_pub_key_attr_count,
	    priv_key_template,
	    ul_priv_key_attr_count,
	    &h_pub_key,
	    &h_priv_key);
	if (rv != CKR_OK)
		{
		PK11err_add_data(PK11_F_DH_GEN_KEY, PK11_R_GEN_KEY, rv);
		goto err;
		}

	/*
	 * Reuse the larger memory allocated. We know the larger memory
	 * should be sufficient for reuse.
	 */
	if (pub_key_template[1].ulValueLen > pub_key_template[2].ulValueLen)
		{
		reuse_mem = pub_key_template[1].pValue;
		reuse_mem_len = pub_key_template[1].ulValueLen + DH_BUF_RESERVE;
		}
	else
		{
		reuse_mem = pub_key_template[2].pValue;
		reuse_mem_len = pub_key_template[2].ulValueLen + DH_BUF_RESERVE;
		}

	rv = pFuncList->C_GetAttributeValue(sp->session, h_pub_key,
		pub_key_result, pub_key_attr_result_count);
	rv1 = pFuncList->C_GetAttributeValue(sp->session, h_priv_key,
		priv_key_result, priv_key_attr_result_count);

	if (rv != CKR_OK || rv1 != CKR_OK)
		{
		rv = (rv != CKR_OK) ? rv : rv1;
		PK11err_add_data(PK11_F_DH_GEN_KEY,
		    PK11_R_GETATTRIBUTVALUE, rv);
		goto err;
		}

	if (((CK_LONG) pub_key_result[0].ulValueLen) <= 0 ||
		((CK_LONG) priv_key_result[0].ulValueLen) <= 0)
		{
		PK11err(PK11_F_DH_GEN_KEY, PK11_R_GETATTRIBUTVALUE);
		goto err;
		}

	/* Reuse the memory allocated */
	pub_key_result[0].pValue = reuse_mem;
	pub_key_result[0].ulValueLen = reuse_mem_len;

	rv = pFuncList->C_GetAttributeValue(sp->session, h_pub_key,
		pub_key_result, pub_key_attr_result_count);

	if (rv != CKR_OK)
		{
		PK11err_add_data(PK11_F_DH_GEN_KEY,
		    PK11_R_GETATTRIBUTVALUE, rv);
		goto err;
		}

	if (pub_key_result[0].type == CKA_VALUE)
		{
		if (dh->pub_key == NULL)
			if ((dh->pub_key = BN_new()) == NULL)
				{
				PK11err(PK11_F_DH_GEN_KEY,
					PK11_R_MALLOC_FAILURE);
				goto err;
				}
		dh->pub_key = BN_bin2bn(pub_key_result[0].pValue,
			pub_key_result[0].ulValueLen, dh->pub_key);
		if (dh->pub_key == NULL)
			{
			PK11err(PK11_F_DH_GEN_KEY, PK11_R_MALLOC_FAILURE);
			goto err;
			}
		}

	/* Reuse the memory allocated */
	priv_key_result[0].pValue = reuse_mem;
	priv_key_result[0].ulValueLen = reuse_mem_len;

	rv = pFuncList->C_GetAttributeValue(sp->session, h_priv_key,
		priv_key_result, priv_key_attr_result_count);

	if (rv != CKR_OK)
		{
		PK11err_add_data(PK11_F_DH_GEN_KEY,
		    PK11_R_GETATTRIBUTVALUE, rv);
		goto err;
		}

	if (priv_key_result[0].type == CKA_VALUE)
		{
		if (dh->priv_key == NULL)
			if ((dh->priv_key = BN_new()) == NULL)
				{
				PK11err(PK11_F_DH_GEN_KEY,
					PK11_R_MALLOC_FAILURE);
				goto err;
				}
		dh->priv_key = BN_bin2bn(priv_key_result[0].pValue,
			priv_key_result[0].ulValueLen, dh->priv_key);
		if (dh->priv_key == NULL)
			{
			PK11err(PK11_F_DH_GEN_KEY, PK11_R_MALLOC_FAILURE);
			goto err;
			}
		}

	ret = 1;

err:

	if (h_pub_key != CK_INVALID_HANDLE)
		{
		rv = pFuncList->C_DestroyObject(sp->session, h_pub_key);
		if (rv != CKR_OK)
			{
			PK11err_add_data(PK11_F_DH_GEN_KEY,
			    PK11_R_DESTROYOBJECT, rv);
			}
		}

	if (h_priv_key != CK_INVALID_HANDLE)
		{
		rv = pFuncList->C_DestroyObject(sp->session, h_priv_key);
		if (rv != CKR_OK)
			{
			PK11err_add_data(PK11_F_DH_GEN_KEY,
			    PK11_R_DESTROYOBJECT, rv);
			}
		}

	for (i = 1; i <= 2; i++)
		{
		if (pub_key_template[i].pValue != NULL)
			{
			OPENSSL_free(pub_key_template[i].pValue);
			pub_key_template[i].pValue = NULL;
			}
		}

	pk11_return_session(sp, OP_DH);
	return (ret);
	}

static int pk11_DH_compute_key(unsigned char *key, const BIGNUM *pub_key,
	DH *dh)
	{
	int i;
	CK_MECHANISM mechanism = {CKM_DH_PKCS_DERIVE, NULL_PTR, 0};
	CK_OBJECT_CLASS key_class = CKO_SECRET_KEY;
	CK_KEY_TYPE key_type = CKK_GENERIC_SECRET;
	CK_OBJECT_HANDLE h_derived_key = CK_INVALID_HANDLE;
	CK_OBJECT_HANDLE h_key = CK_INVALID_HANDLE;

	CK_ULONG ul_priv_key_attr_count = 2;
	CK_ATTRIBUTE priv_key_template[] =
		{
		{CKA_CLASS, (void*) NULL, sizeof (key_class)},
		{CKA_KEY_TYPE, (void*) NULL, sizeof (key_type)},
		};

	CK_ULONG priv_key_attr_result_count = 1;
	CK_ATTRIBUTE priv_key_result[] =
		{
		{CKA_VALUE, (void *)NULL, 0}
		};

	CK_RV rv;
	int ret = -1;
	PK11_SESSION *sp = NULL;

	if (dh->priv_key == NULL)
		goto err;

	priv_key_template[0].pValue = &key_class;
	priv_key_template[1].pValue = &key_type;

	if ((sp = pk11_get_session(OP_DH)) == NULL)
		goto err;

	mechanism.ulParameterLen = BN_num_bytes(pub_key);
	mechanism.pParameter = OPENSSL_malloc(mechanism.ulParameterLen);
	if (mechanism.pParameter == NULL)
		{
		PK11err(PK11_F_DH_COMP_KEY, PK11_R_MALLOC_FAILURE);
		goto err;
		}
	BN_bn2bin(pub_key, mechanism.pParameter);

	(void) check_new_dh_key(sp, dh);

	h_key = sp->opdata_dh_key;
	if (h_key == CK_INVALID_HANDLE)
		h_key = sp->opdata_dh_key =
			pk11_get_dh_key((DH*) dh, &sp->opdata_dh,
			    &sp->opdata_dh_priv_num, sp->session);

	if (h_key == CK_INVALID_HANDLE)
		{
		PK11err(PK11_F_DH_COMP_KEY, PK11_R_CREATEOBJECT);
		goto err;
		}

	rv = pFuncList->C_DeriveKey(sp->session,
	    &mechanism,
	    h_key,
	    priv_key_template,
	    ul_priv_key_attr_count,
	    &h_derived_key);
	if (rv != CKR_OK)
		{
		PK11err_add_data(PK11_F_DH_COMP_KEY, PK11_R_DERIVEKEY, rv);
		goto err;
		}

	rv = pFuncList->C_GetAttributeValue(sp->session, h_derived_key,
	    priv_key_result, priv_key_attr_result_count);

	if (rv != CKR_OK)
		{
		PK11err_add_data(PK11_F_DH_COMP_KEY, PK11_R_GETATTRIBUTVALUE,
		    rv);
		goto err;
		}

	if (((CK_LONG) priv_key_result[0].ulValueLen) <= 0)
		{
		PK11err(PK11_F_DH_COMP_KEY, PK11_R_GETATTRIBUTVALUE);
		goto err;
		}
	priv_key_result[0].pValue =
		OPENSSL_malloc(priv_key_result[0].ulValueLen);
	if (!priv_key_result[0].pValue)
		{
		PK11err(PK11_F_DH_COMP_KEY, PK11_R_MALLOC_FAILURE);
		goto err;
		}

	rv = pFuncList->C_GetAttributeValue(sp->session, h_derived_key,
		priv_key_result, priv_key_attr_result_count);

	if (rv != CKR_OK)
		{
		PK11err_add_data(PK11_F_DH_COMP_KEY, PK11_R_GETATTRIBUTVALUE,
		    rv);
		goto err;
		}

	/*
	 * OpenSSL allocates the output buffer 'key' which is the same
	 * length of the public key. It is long enough for the derived key
	 */
	if (priv_key_result[0].type == CKA_VALUE)
		{
		/*
		 * CKM_DH_PKCS_DERIVE mechanism is not supposed to strip
		 * leading zeros from a computed shared secret. However,
		 * OpenSSL always did it so we must do the same here. The
		 * vagueness of the spec regarding leading zero bytes was
		 * finally cleared with TLS 1.1 (RFC 4346) saying that leading
		 * zeros are stripped before the computed data is used as the
		 * pre-master secret.
		 */
		for (i = 0; i < priv_key_result[0].ulValueLen; ++i)
			{
			if (((char *)priv_key_result[0].pValue)[i] != 0)
				break;
			}

		(void) memcpy(key, ((char *)priv_key_result[0].pValue) + i,
			priv_key_result[0].ulValueLen - i);
		ret = priv_key_result[0].ulValueLen - i;
		}

err:

	if (h_derived_key != CK_INVALID_HANDLE)
		{
		rv = pFuncList->C_DestroyObject(sp->session, h_derived_key);
		if (rv != CKR_OK)
			{
			PK11err_add_data(PK11_F_DH_COMP_KEY,
			    PK11_R_DESTROYOBJECT, rv);
			}
		}
	if (priv_key_result[0].pValue)
		{
		OPENSSL_free(priv_key_result[0].pValue);
		priv_key_result[0].pValue = NULL;
		}

	if (mechanism.pParameter)
		{
		OPENSSL_free(mechanism.pParameter);
		mechanism.pParameter = NULL;
		}

	pk11_return_session(sp, OP_DH);
	return (ret);
	}


static CK_OBJECT_HANDLE pk11_get_dh_key(DH* dh,
	DH **key_ptr, BIGNUM **dh_priv_num, CK_SESSION_HANDLE session)
	{
	CK_RV rv;
	CK_OBJECT_HANDLE h_key = CK_INVALID_HANDLE;
	CK_OBJECT_CLASS class = CKO_PRIVATE_KEY;
	CK_KEY_TYPE key_type = CKK_DH;
	CK_ULONG found;
	CK_BBOOL rollback = CK_FALSE;
	int i;

	CK_ULONG ul_key_attr_count = 7;
	CK_ATTRIBUTE key_template[] =
		{
		{CKA_CLASS, (void*) NULL, sizeof (class)},
		{CKA_KEY_TYPE, (void*) NULL, sizeof (key_type)},
		{CKA_DERIVE, &pk11_true, sizeof (pk11_true)},
		{CKA_PRIVATE, &pk11_false, sizeof (pk11_false)},
		{CKA_PRIME, (void *) NULL, 0},
		{CKA_BASE, (void *) NULL, 0},
		{CKA_VALUE, (void *) NULL, 0},
		};

	key_template[0].pValue = &class;
	key_template[1].pValue = &key_type;

	key_template[4].ulValueLen = BN_num_bytes(dh->p);
	key_template[4].pValue = (CK_VOID_PTR)OPENSSL_malloc(
		(size_t)key_template[4].ulValueLen);
	if (key_template[4].pValue == NULL)
		{
		PK11err(PK11_F_GET_DH_KEY, PK11_R_MALLOC_FAILURE);
		goto malloc_err;
		}

	BN_bn2bin(dh->p, key_template[4].pValue);

	key_template[5].ulValueLen = BN_num_bytes(dh->g);
	key_template[5].pValue = (CK_VOID_PTR)OPENSSL_malloc(
		(size_t)key_template[5].ulValueLen);
	if (key_template[5].pValue == NULL)
		{
		PK11err(PK11_F_GET_DH_KEY, PK11_R_MALLOC_FAILURE);
		goto malloc_err;
		}

	BN_bn2bin(dh->g, key_template[5].pValue);

	key_template[6].ulValueLen = BN_num_bytes(dh->priv_key);
	key_template[6].pValue = (CK_VOID_PTR)OPENSSL_malloc(
		(size_t)key_template[6].ulValueLen);
	if (key_template[6].pValue == NULL)
		{
		PK11err(PK11_F_GET_DH_KEY, PK11_R_MALLOC_FAILURE);
		goto malloc_err;
		}

	BN_bn2bin(dh->priv_key, key_template[6].pValue);

	/* see find_lock array definition for more info on object locking */
	LOCK_OBJSTORE(OP_DH);
	rv = pFuncList->C_FindObjectsInit(session, key_template,
		ul_key_attr_count);

	if (rv != CKR_OK)
		{
		PK11err_add_data(PK11_F_GET_DH_KEY, PK11_R_FINDOBJECTSINIT, rv);
		goto err;
		}

	rv = pFuncList->C_FindObjects(session, &h_key, 1, &found);

	if (rv != CKR_OK)
		{
		PK11err_add_data(PK11_F_GET_DH_KEY, PK11_R_FINDOBJECTS, rv);
		goto err;
		}

	rv = pFuncList->C_FindObjectsFinal(session);

	if (rv != CKR_OK)
		{
		PK11err_add_data(PK11_F_GET_DH_KEY, PK11_R_FINDOBJECTSFINAL,
		    rv);
		goto err;
		}

	if (found == 0)
		{
		rv = pFuncList->C_CreateObject(session,
			key_template, ul_key_attr_count, &h_key);
		if (rv != CKR_OK)
			{
			PK11err_add_data(PK11_F_GET_DH_KEY, PK11_R_CREATEOBJECT,
			    rv);
			goto err;
			}
		}

	if (dh_priv_num != NULL)
		if ((*dh_priv_num = BN_dup(dh->priv_key)) == NULL)
			{
			PK11err(PK11_F_GET_DH_KEY, PK11_R_MALLOC_FAILURE);
			rollback = CK_TRUE;
			goto err;
			}

	/* LINTED: E_CONSTANT_CONDITION */
	KEY_HANDLE_REFHOLD(h_key, OP_DH, CK_FALSE, rollback, err);
	if (key_ptr != NULL)
		*key_ptr = dh;

err:
	if (rollback)
		{
		/*
		 * We do not care about the return value from C_DestroyObject()
		 * since we are doing rollback.
		 */
		if (found == 0)
			(void) pFuncList->C_DestroyObject(session, h_key);
		h_key = CK_INVALID_HANDLE;
		}

	UNLOCK_OBJSTORE(OP_DH);

malloc_err:
	for (i = 4; i <= 6; i++)
		{
		if (key_template[i].pValue != NULL)
			{
			OPENSSL_free(key_template[i].pValue);
			key_template[i].pValue = NULL;
			}
		}

	return (h_key);
	}

/*
 * Check for cache miss and clean the object pointer and handle
 * in such case. Return 1 for cache hit, 0 for cache miss.
 *
 * Note: we rely on pk11_destroy_dh_key_objects() to set sp->opdata_dh
 *       to CK_INVALID_HANDLE even when it fails to destroy the object.
 */
static int check_new_dh_key(PK11_SESSION *sp, DH *dh)
	{
	/*
	 * Provide protection against DH structure reuse by making the
	 * check for cache hit stronger. Private key component of DH key
	 * is unique so it is sufficient to compare it with value cached
	 * in PK11_SESSION structure.
	 */
	if ((sp->opdata_dh != dh) ||
	    (BN_cmp(sp->opdata_dh_priv_num, dh->priv_key) != 0))
		{
		/*
		 * We do not check the return value because even in case of
		 * failure the sp structure will have both key pointer
		 * and object handle cleaned and pk11_destroy_object()
		 * reports the failure to the OpenSSL error message buffer.
		 */
		(void) pk11_destroy_dh_object(sp, CK_TRUE);
		return (0);
		}
	return (1);
	}
#endif

/*
 * Local function to simplify key template population
 * Return 0 -- error, 1 -- no error
 */
static int
init_template_value(BIGNUM *bn, CK_VOID_PTR *p_value,
	CK_ULONG *ul_value_len)
	{
	CK_ULONG len;

	/*
	 * This function can be used on non-initialized BIGNUMs. It is easier to
	 * check that here than individually in the callers.
	 */
	if (bn != NULL)
		len = BN_num_bytes(bn);

	if (bn == NULL || len == 0)
		return (1);

	*ul_value_len = len;
	*p_value = (CK_VOID_PTR)OPENSSL_malloc((size_t)*ul_value_len);
	if (*p_value == NULL)
		return (0);

	BN_bn2bin(bn, *p_value);

	return (1);
	}

static void
attr_to_BN(CK_ATTRIBUTE_PTR attr, CK_BYTE attr_data[], BIGNUM **bn)
	{
		if (attr->ulValueLen > 0)
			*bn = BN_bin2bn(attr_data, attr->ulValueLen, NULL);
	}

/*
 * Find one object in the token. It is an error if we can not find the object or
 * if we find more objects based on the template we got.
 *
 * Returns:
 *	1 OK
 *	0 no object or more than 1 object found
 */
static int
find_one_object(PK11_OPTYPE op, CK_SESSION_HANDLE s,
    CK_ATTRIBUTE_PTR ptempl, CK_ULONG nattr, CK_OBJECT_HANDLE_PTR pkey)
	{
	CK_RV rv;
	CK_ULONG objcnt;

	LOCK_OBJSTORE(op);
	if ((rv = pFuncList->C_FindObjectsInit(s, ptempl, nattr)) != CKR_OK)
		{
		PK11err_add_data(PK11_F_FIND_ONE_OBJECT,
		    PK11_R_FINDOBJECTSINIT, rv);
		goto err;
		}

	rv = pFuncList->C_FindObjects(s, pkey, 1, &objcnt);
	if (rv != CKR_OK)
		{
		PK11err_add_data(PK11_F_FIND_ONE_OBJECT, PK11_R_FINDOBJECTS,
		    rv);
		goto err;
		}

	if (objcnt > 1)
		{
		PK11err(PK11_F_FIND_ONE_OBJECT,
		    PK11_R_MORE_THAN_ONE_OBJECT_FOUND);
		goto err;
		}
	else
		if (objcnt == 0)
			{
			PK11err(PK11_F_FIND_ONE_OBJECT, PK11_R_NO_OBJECT_FOUND);
			goto err;
			}

	(void) pFuncList->C_FindObjectsFinal(s);
	UNLOCK_OBJSTORE(op);
	return (1);
err:
	UNLOCK_OBJSTORE(op);
	return (0);
	}

/*
 * OpenSSL 1.0.0 introduced ENGINE API for the PKEY EVP functions. Sadly,
 * "openssl dgst -dss1 ..." now uses a new function EVP_DigestSignInit() which
 * internally needs a PKEY method for DSA even when in the engine. So, to avoid
 * a regression when moving from 0.9.8 to 1.0.0, we use an internal OpenSSL
 * structure for the DSA PKEY methods to make it work. It is a future project to
 * make it work with HW acceleration.
 *
 * Note that at the time of 1.0.0d release there is no documentation as to how
 * the PKEY EVP functions are to be implemented in an engine. There is only one
 * engine shipped with 1.0.0d that uses the PKEY EVP methods, the GOST engine.
 * It was used as an example when fixing the above mentioned regression problem.
 */
int
pk11_engine_pkey_methods(ENGINE *e, EVP_PKEY_METHOD **pmeth, const int **nids,
    int nid)
	{
	if (pmeth == NULL)
		{
		*nids = pk11_pkey_meth_nids;
		return (1);
		}

	switch (nid)
		{
		case NID_dsa:
			*pmeth = (EVP_PKEY_METHOD *)EVP_PKEY_meth_find(nid);
			return (1);
		}

	/* Error branch. */
	*pmeth = NULL;
	return (0);
	}

#endif	/* OPENSSL_NO_HW_PK11 */
#endif	/* OPENSSL_NO_HW */
 
 
Close
loading
Please Confirm
Close